Calculating the carbon footprint of publications

The greenhouse gas emissions of publications could be counted with a simple table, suggests Prof. Jens Eisert.

The greenhouse gas emissions of publications could be counted with a simple table, suggests Prof. Jens Eisert. © privat

The warming stripes show the average global temperatures between 1850 and 2022. Global temperatures have since then increased by over 1,2 C°.

The warming stripes show the average global temperatures between 1850 and 2022. Global temperatures have since then increased by over 1,2 C°. © Ed Hawkins, National Centre for Atmospheric Science, UoR.

Prof. Dr. Jens Eisert heads the Quantum Computation and Simulation research group, which is jointly funded by Freie Universität Berlin and HZB. The theoretical physicist recently received an Advanced Grant from the European Research Council ERC for his research project "DebuQC". But Eisert is not only an award-winning scientist, he is also concerned about global warming. Last year, on the initiative of Ryan Sweke, he and his team published a proposal that deserves attention: scientific publications on theoretical physics or chemistry could include a simple table listing the greenhouse gases emitted during the research. This would raise awareness of the fact that research is not climate neutral.

What is the aim of this proposal?

Jens Eisert: Science is important: it is the basis of our knowledge, a cultural activity, the engine of our prosperity. But it does not come for free, we need computing power and laboratories, we fly to conferences. All of this releases greenhouse gases and contributes to global warming. I think we should make this transparent and keep it in mind in all our work. It's about raising awareness.

How did the idea come about?

We were working on a joint scientific publication, and out of interest we calculated how much greenhouse gas this work produced. It was a surprising amount. We then turned it into a small side project, writing a programme that allows you to easily generate a table that clearly shows how much greenhouse gas your own research work produces. We attached this table to our own paper, which was published in Communications Physics, a Nature group journal. The editors of Communications Physics then contacted us and persuaded us to write another paper on the subject. Of course we were happy to do it.

What did you find surprising?

One remarkable thing is how big the numbers are that come out of it. I'm a theoretical physicist, so I don't use a lab. But the mainframe computers and even the computer clusters that we use locally have a huge carbon footprint, several tonnes, just like flying. And all the flying comes on top of that. What also annoys me sometimes is the high frequency of meetings. There is no doubt that science cannot do without meetings and discussions. But many administrative meetings don't have to be in person. I often have to travel because the funders require it, and I sometimes have the impression that some meetings are held in nice places just to get pictures with a beautiful background. This causes a lot of unnecessary emissions and that could be reconsidered.

Is it time-consuming to create such a table ?

No, not at all. We have created a website that takes you step by step through the process, which takes an hour at most, if that.

How do you count emissions that have been offset?

The emissions were produced anyway, so we count them. We still ask whether there has been offsetting.

How many scientists have followed your example?

I have now seen a few publications in my field that have taken this up. But there could be more, I think.

What changes would you like to see?

Again, of course we want to meet sometimes, and then there must be time for conversation. But a short exchange, even a short talk, can also be done virtually. What bothers me is that many organisations proclaim they are commited to climate protection, but don't put it into practice; it's just a PR slogan.

I'm more pragmatic, so I'm in favour of action, not talk! It would also be more family-friendly. The other day I filled in a work-life balance form. It was several pages long and I didn't have time to do it until around 11 pm, although my working day starts just after 4 am. That's what I mean. It just has to be done. Just ask my wife and child. Climate protection is also about being aware of what you are contributing and then asking what is necessary. 

Thank you for the interview!

 

Click here to go to the website to calculate the climate footprint of your own publication. The website is geared towards papers in theoretical physics/chemistry.

https://scientific-conduct.github.io/

https://mlco2.github.io/impact/

 

Die Fragen stellte Antonia Rötger.

  • Copy link

You might also be interested in

  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.