Stipendium der Alexander von Humboldt-Stiftung für Dr. Jie Wei

Dr. Jie Wei m&ouml;chte die Struktur-Eigenschafts-Beziehungen an elektrokatalytischen Grenzfl&auml;chen im Nanometerbereich f&uuml;r die CO<sub>2</sub>- und CO-Umwandlung weiter aufkl&auml;ren.

Dr. Jie Wei möchte die Struktur-Eigenschafts-Beziehungen an elektrokatalytischen Grenzflächen im Nanometerbereich für die CO2- und CO-Umwandlung weiter aufklären. © C. Kley / HZB

Im April hat Dr. Jie Wei seine Forschungsarbeit in der Helmholtz-Nachwuchsgruppe "Nanoskalige Operando CO2 Photo-Elektrokatalyse" am Helmholtz-Zentrum Berlin (HZB) und Fritz-Haber-Institut (FHI) der Max-Planck-Gesellschaft aufgenommen. Wei erhielt eines der hochkompetitiven Humboldt-Postdoktorandenstipendien und wird sein zweijähriges Projekt unter der Leitung der wissenschaftlichen Gastgeber Dr. Christopher Kley und Prof. Dr. Beatriz Roldan Cuenya durchführen.

Jie Wei kommt aus China und hat an der Chinesischen Universität für Wissenschaft und Technik in physikalischer Chemie promoviert. Er verbrachte zwei Jahre als Postdoc an der Tsinghua-Universität (China). Seine bisherigen Arbeiten konzentrierten sich auf die Grenzflächenstruktur und das dynamische Verhalten von Katalysatoren unter Reaktionsbedingungen, wobei er elektrochemische Rastertunnelmikroskopie (STM), differentielle elektrochemische Massenspektrometrie und In-situ-Raman-Spektroskopie einsetzte.

"Ich habe mich für eine Postdoc-Stelle in dieser Gruppe beworben, weil die Gastgeber hervorragende Expertise besitzen, modernste oberflächensensitive In-situ-Charakterisierungstechniken einsetzen, um das grundlegende Verständnis von Katalysatoren unter Reaktionsbedingungen zu fördern", sagt Wei. "Gemeinsam bieten HZB und FHI ein einzigartiges Portfolio an hochmodernen experimentellen Ressourcen sowie eine starke Theorie-Unterstützung für die Berechnung und Modellierung von Fest-Flüssig-Grenzflächen. Der Zugang zu solch modernen spektroskopischen Charakterisierungsmethoden, insbesondere zur elektrochemischen Rasterkraftmikroskopie, ist fantastisch. Ich möchte, die Struktur-Eigenschafts-Beziehungen an elektrokatalytischen Grenzflächen im Nanometerbereich für die CO2- und CO-Umwandlung weiter aufklären", fährt er fort.

Von seinem Aufenthalt in Berlin erhofft sich Wei außerdem, sein wissenschaftliches Fachwissen zu erweitern, indem er sich verschiedenen Methoden und komplexeren Probensystemen zuwendet.
"Wir freuen uns darauf, mit Jies Expertise das Feld der nanoskaligen Elektrokatalyse für die Umwandlung und Speicherung erneuerbarer Energien voranzutreiben", sagt Christopher Kley. "Ein Schlüssel für unsere erfolgreiche Forschung ist ein sehr vielfältiges und offenes Umfeld. Ich freue mich, dass Jie unser Team mit neuen Perspektiven und Ideen bereichert", ergänzt Beatriz Roldan Cuenya.

Das HZB und das FHI arbeiten seit mehreren Jahren in der Katalyseforschung zusammen. Gemeinsam betreiben sie die vom BMBF geförderte Forschungsplattform für die Katalyse (CatLab).

Die Alexander von Humboldt-Stiftung vergibt jährlich verschiedene Stipendien an herausragende Wissenschaftlerinnen und Wissenschaftler aus aller Welt in allen Disziplinen. Die Stipendien sind hochbegehrt, und zur "Humboltianer"-Gemeinschaft zählen zahlreiche Nobelpreisträger.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.
  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.
  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.