Fraktonen als Informationsspeicher: Noch nicht greifbar, aber nah

Aus den numerischen Modellierungen ergibt sich die Fraktonen-Signatur mit typischen Knotenpunkten, die sie mit Neutronenstreuung auch experimentell zu beobachten sein sollte (links). Durch das Zulassen von Quantenfluktuationen verschmiert diese Signatur, selbst bei T=0 (rechts).

Aus den numerischen Modellierungen ergibt sich die Fraktonen-Signatur mit typischen Knotenpunkten, die sie mit Neutronenstreuung auch experimentell zu beobachten sein sollte (links). Durch das Zulassen von Quantenfluktuationen verschmiert diese Signatur, selbst bei T=0 (rechts). © HZB

Ein neues Quasiteilchen mit interessanten Eigenschaften ist aufgetaucht – vorerst allerdings nur in theoretischen Modellierungen von Festkörpern mit bestimmten magnetischen Eigenschaften. Anders als erwartet, bringen Quantenfluktuationen das Quasiteilchen jedoch nicht deutlicher zum Vorschein, sondern verschmieren seine Signatur, zeigt nun ein internationales Team am HZB und der Freien Universität Berlin.

 

Anregungen in Festkörpern lassen sich mathematisch auch als Quasiteilchen abbilden, zum Beispiel können Gitterschwingungen, die mit der Temperatur zunehmen, gut als Phononen beschrieben werden. Rein mathematisch sind jedoch auch Quasiteilchen möglich, die bislang noch nie in einem Material beobachtet wurden. Wenn solche "theoretischen" Quasiteilchen interessante Talente besitzen, dann lohnt sich ein näherer Blick. Zum Beispiel auf die Fraktonen.

Kandidaten für die Speicherung von Information

Fraktonen sind Bruchteile von Spinanregungen und dürfen keine kinetische Energie besitzen. Das bedeutet: Sie sind vollkommen ortsfest. Damit sind Fraktonen neue Kandidaten für die perfekt sichere Informationsspeicherung. Zumal sie sich unter besonderen Bedingungen dann doch versetzen lassen, nämlich Huckepack auf einem weiteren Quasiteilchen. „Die Fraktonen sind aus einer mathematischen Erweiterung der Quantenelektrodynamik entstanden, in denen elektrische Felder nicht als Vektoren, sondern als Tensoren behandelt werden - ganz losgelöst von realen Materialien“, erklärt Prof. Dr. Johannes Reuther, theoretischer Physiker an der Freien Universität Berlin und am HZB.

Einfache Modellsysteme

Um Fraktonen in Zukunft auch experimentell beobachten zu können, ist es nötig, möglichst einfache Modellsysteme zu finden: Daher modellierte man zunächst oktaedrische Kristallstrukturen mit antiferromagnetisch wechselwirkenden Eckatomen. Dabei zeigten sich besondere Muster mit verschiedenen Knotenpunkten in den Spin-Korrelationen, die im Prinzip in einem realen Material auch experimentell mit Neutronenexperimenten nachweisbar sein müssten. „Die Spins wurden in bisherigen Arbeiten jedoch wie klassische Vektoren behandelt, ohne Berücksichtigung von Quantenfluktuationen“, sagt Reuther.

Jetzt mit Quantenfluktuationen

Deshalb hat nun Reuther zusammen mit Yasir Iqbal vom Indian Institute of Technology in Chennai, Indien und seinem Doktoranden Nils Niggemann erstmals Quantenfluktuationen in die Berechnung dieses oktaedrischen Festkörpersystems mit aufgenommen. Es handelt sich um sehr aufwändige numerische Berechnungen, die grundsätzlich in der Lage sind, Fraktonen abzubilden. „Das Ergebnis hat uns überrascht, denn tatsächlich sehen wir, dass Quantenfluktuationen die Fraktonen nicht deutlicher hervortreten lassen, sondern im Gegenteil, vollständig verwischen, sogar am absoluten Nullpunkt der Temperatur“, sagt Niggemann.

Im nächsten Schritt wollen die drei theoretischen Physiker eine Modellierung entwickeln, in der sich Quantenfluktuationen hoch- oder runterregeln lassen. Eine Art Zwischenwelt zwischen der klassischen Festkörperphysik und den bisherigen Simulationen, in der sich die erweiterte quantenelektrodynamische Theorie mit ihren Fraktonen genauer untersuchen lässt.

Von Theorie zum Experiment

Noch ist kein Material bekannt, das Fraktonen zeigt. Aber wenn die nächsten Modellierungen genauere Hinweise geben, wie Kristallstruktur und magnetische Wechselwirkungen beschaffen sein müssten, dann könnten Teams aus der Experimentalphysik damit beginnen, solche Materialien zu entwerfen und durchzumessen. „In den nächsten Jahren wird es sicher noch keine Anwendung dieser Erkenntnisse geben, aber vielleicht in den kommenden Dekaden und dann wäre es der berühmte Quantensprung, mit wirklich neuen Eigenschaften“, sagt Reuther.

Antonia Rötger

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Science Highlight
    25.11.2025
    Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Ein Forschungsteam vom Helmholtz Zentrum Berlin (HZB) und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) hat herausgefunden, wie Karbonatmoleküle die Umwandlung von CO2 in nützliche Kraftstoffe durch Gold-Elektrokatalysatoren beeinflussen. Ihre Studie beleuchtet, welche molekularen Mechanismen bei der CO2-Elektrokatalyse und der Wasserstoffentwicklung eine Rolle spielen und zeigt Strategien zur Verbesserung der Energieeffizienz und der Selektivität der katalytischen Reaktion auf.