Fractons as information storage: Not yet quite tangible, but close

Numerical modelling results in a fraction-signature with typical pinch points (left) and should be observable experimentally with neutron scattering. Allowing quantum fluctuations blurs this signature (right), even at T=0 K.

Numerical modelling results in a fraction-signature with typical pinch points (left) and should be observable experimentally with neutron scattering. Allowing quantum fluctuations blurs this signature (right), even at T=0 K. © HZB

A new quasiparticle with interesting properties has appeared in solid-state physics - but so far only in the theoretical modelling of solids with certain magnetic properties. An international team from HZB and Freie Universität Berlin has now shown that, contrary to expectations, quantum fluctuations do not make the quasiparticle appear more clearly, but rather blur its signature.

 

Excitations in solids can also be represented mathematically as quasiparticles; for example, lattice vibrations that increase with temperature can be well described as phonons. Mathematically, also quasiparticles can be described that have never been observed in a material before. If such "theoretical" quasiparticles have interesting talents, then it is worth taking a closer look. Take fractons, for example.

Perfect storage of information

Fractons are fractions of spin excitations and are not allowed to possess kinetic energy. As a consequence, they are completely stationary and immobile. This makes fractons new candidates for perfectly secure information storage. Especially since they can be moved under special conditions, namely piggyback on another quasiparticle. "Fractons have emerged from a mathematical extension of quantum electrodynamics, in which electric fields are treated not as vectors but as tensors - completely detached from real materials," explains Prof. Dr. Johannes Reuther, theoretical physicist at the Freie Universität Berlin and at HZB.

Simple models

In order to be able to observe fractons experimentally in the future, it is necessary to find model systems that are as simple as possible: Therefore, octahedral crystal structures with antiferromagnetically interacting corner atoms were modelled first. This revealed special patterns with characteristic pinch points in the spin correlations, which in principle can also be detected experimentally in a real material with neutron experiments. "In previous work, however, the spins were treated like classical vectors, without taking quantum fluctuations into account," says Reuther.

Including quantum fluctuations

This is why Reuther, together with Yasir Iqbal from the Indian Institute of Technology in Chennai, India, and his doctoral student Nils Niggemann, has now included quantum fluctuations in the calculation of this octahedral solid-state system for the first time. These are very complex numerical calculations, that in principle are able to map fractons. "The result surprised us, because we actually see that quantum fluctuations do not enhance the visibility of fractons, but on the contrary, completely blur them, even at absolute zero temperature," says Niggemann.

In the next step, the three theoretical physicists want to develop a model in which quantum fluctuations can be regulated up or down. A kind of intermediate world between classical solid-state physics and the previous simulations, in which the extended quantum electrodynamic theory with its fractons can be studied in more detail.

From theory to experiment

No material is yet known to exhibit fractons. But if the next model gives more precise indications of what the crystal structure and magnetic interactions should be like, then experimental physicists could start designing and measuring such materials. "I do not see an application of these findings in the next few years, but perhaps in the coming decades and then it would be the famous quantum leap, with really new properties," says Reuther.

Antonia Rötger

  • Copy link

You might also be interested in

  • Nanoislands on silicon with switchable topological textures
    Science Highlight
    20.01.2025
    Nanoislands on silicon with switchable topological textures
    Nanostructures with specific electromagnetic patterns promise applications in nanoelectronics and future information technologies. However, it is very challenging to control those patterns. Now, a team at HZB examined a specific class of nanoislands on silicon with interesting chiral, swirling polar textures, which can be stabilised and even reversibly switched by an external electric field.
  • Lithium-sulphur pouch cells investigated at BESSY II
    Science Highlight
    08.01.2025
    Lithium-sulphur pouch cells investigated at BESSY II
    A team from HZB and the Fraunhofer Institute for Material and Beam Technology (IWS) in Dresden has gained new insights into lithium-sulphur pouch cells at the BAMline of BESSY II. Supplemented by analyses in the HZB imaging laboratory and further measurements, a new picture emerges of processes that limit the performance and lifespan of this industrially relevant battery type. The study has been published in the prestigious journal Advanced Energy Materials.
  • Largest magnetic anisotropy of a molecule measured at BESSY II
    Science Highlight
    21.12.2024
    Largest magnetic anisotropy of a molecule measured at BESSY II
    At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.