Spintronik an BESSY II: Domänenwände in magnetischen Nanodrähten

Diese magnetempfindlichen Abbildungen entstanden am HZB: a) XAS-Bild des Nanodraht-Kreuzes. Röntgenstrahl und Magnetfeld sind entlang der (vertikalen) Richtung des Nanodrahtes ausgerichtet (grüner Pfeil). b-f) XMCD-Bilder des Kreuzes für verschiedene angelegte Felder.

Diese magnetempfindlichen Abbildungen entstanden am HZB: a) XAS-Bild des Nanodraht-Kreuzes. Röntgenstrahl und Magnetfeld sind entlang der (vertikalen) Richtung des Nanodrahtes ausgerichtet (grüner Pfeil). b-f) XMCD-Bilder des Kreuzes für verschiedene angelegte Felder. © HZB

Magnetische Domänenwände sorgen für elektrischen Widerstand, da es für Elektronenspins schwierig ist, ihrer magnetischen Struktur zu folgen. Dieses Phänomen könnte in spintronischen Bauelementen genutzt werden, bei denen der elektrische Widerstand je nach Vorhandensein oder Fehlen einer Domänenwand variieren kann. Eine besonders interessante Materialklasse sind Halbmetalle wie La2/3Sr1/3MnO3 (LSMO). Sie weisen vollständige Spinpolarisation auf. Allerdings war der Widerstand einer einzelnen Domänenwand in Halbmetallen bisher noch nicht bestimmt worden. Nun hat ein Team aus Spanien, Frankreich und Deutschland eine einzelne Domänenwand auf einem LSMO-Nanodraht erzeugt und Widerstandsänderungen gemessen, die 20mal größer sind als bei normalen Ferromagneten wie Kobalt.

 

Die magnetische Textur, die magnetischen Domänenwänden eigen ist, birgt Potenzial für spintronische Anwendungen. Der elektrische Widerstand in Ferromagneten hängt davon ab, ob Domänenwände vorhanden sind oder nicht. Dieser binäre Effekt (bekannt als Domänenwand-Magnetowiderstand) könnte zur Codierung von Informationen in spintronischen Speichergeräten genutzt werden. Ihre Nutzung wird jedoch durch die geringen Änderungen des Widerstands behindert, die bei normalen Ferromagneten beobachtet werden. Eine besonders interessante Klasse von Materialien sind Manganit-Perowskite wie La2/3Sr1/3MnO3 (LSMO). Diese Verbindungen weisen nur eine Art von Spin auf (vollständige Spinpolarisation), was potenziell zu Domänenwand-Magnetowiderstandseffekten führen könnte, die groß genug sind, um in einer neuen Generation von spintronischen Sensoren und Injektoren genutzt zu werden.

Trotz dieser Perspektive gibt es große Diskrepanzen bei den berichteten Werten des Domänenwand-Magnetowiderstands für dieses System. Ein Team aus Spanien, Frankreich und Deutschland hat nun Bauelemente aus Nanodrähten hergestellt, die die Keimbildung einzelner magnetischer Domänenwände ermöglichen. Magnetotransportmessungen zeigen, dass das Vorhandensein einer Domänenwand zu einer Erhöhung des elektrischen Widerstands um bis zu 12 % führt. In absoluten Zahlen ist die beobachtete Widerstandsänderung 20mal größer als in einem normalen Ferromagneten wie Kobalt.

Diese Arbeit ist das Ergebnis einer langjährigen Zusammenarbeit, die Filmwachstum und Nanofabrikation, Transportmessungen, Kontaktmikroskopie (MFM), theoretische Simulationen und den Einsatz fortschrittlicher Charakterisierungstechniken wie der Röntgen-Photoemissions-Elektronenmikroskopie umfasst. Die Kombination einer Vielzahl unterschiedlicher Techniken ermöglicht einen facettenreichen Blick auf ein komplexes Problem, der neue Einblicke in eine heftig diskutierte offene Frage ermöglicht hat.

Sergio Valencia

  • Link kopieren

Das könnte Sie auch interessieren

  • Topologische Überraschungen beim Element Kobalt
    Science Highlight
    11.02.2026
    Topologische Überraschungen beim Element Kobalt
    Das Element Kobalt gilt als typischer Ferromagnet ohne weitere Geheimnisse. Ein internationales Team unter der Leitung von Dr. Jaime Sánchez-Barriga (HZB) hat nun jedoch komplexe topologische Merkmale in der elektronischen Struktur von Kobalt entdeckt. Spin-aufgelöste Messungen der Bandstruktur (Spin-ARPES) an BESSY II zeigten verschränkte Energiebänder, die sich selbst bei Raumtemperatur entlang ausgedehnter Pfade in bestimmten kristallographischen Richtungen kreuzen. Dadurch kann Kobalt als hochgradig abstimmbare und unerwartet reichhaltige topologische Plattform verstanden werden. Dies eröffnet Perspektiven, um magnetische topologische Zustände in Kobalt für künftige Informationstechnologien zu nutzen.
  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.
  • Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Nachricht
    27.01.2026
    Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Unsere Solarfassade in Berlin-Adlershof hat im Jahr 2025 so viel Strom erzeugt wie in keinem der vergangenen vier Betriebsjahre.