Collaborative Research Centre “Nanoscale Metals” raises 11 million euros

Licht wird durch den Nanopartikel fokussiert und die Energie lokal in verschiedene Formen umgewandelt, die dann Chemische Transformation antreiben.

Licht wird durch den Nanopartikel fokussiert und die Energie lokal in verschiedene Formen umgewandelt, die dann Chemische Transformation antreiben. © Felix Stete

Several HZB research teams are participating in the new SFB 1636 "Elementary processes of light-driven reactions on nanoscale metals".

Research on Nansoscale Metals

“We are excited and look forward to the new synergies that can arise from this,” says Prof. Matias Bargheer, who is one of the spokespersons for the new Collaborative Research Centre, led by University of Potsdam. The HZB scientists Renske van der Veen, Yan Lu and Alexander Föhlisch are also involved, in addition to the team of Bargheer, who heads a joint research group at the University of Potsdam and HZB.

The research project aims to help understand the elementary processes that trigger light-controlled chemical reactions on metals at the nanoscale. “There are still many unanswered questions at this fascinating transition between physics and chemistry and we can already apply our concepts to organic coupling reactions and polymerisations, e.g. to functionalise nanoparticles asymmetrically,” says Prof. Dr. Matias Bargheer, talking about the struggles as well as the perspectives of their collaborative research.

Antonia Rötger

  • Copy link

You might also be interested in

  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.