Sonderforschungsbereich „Nanoskalige Metalle“ wirbt 11 Millionen Euro ein

Licht wird durch den Nanopartikel fokussiert und die Energie lokal in verschiedene Formen umgewandelt, die dann Chemische Transformation antreiben.

Licht wird durch den Nanopartikel fokussiert und die Energie lokal in verschiedene Formen umgewandelt, die dann Chemische Transformation antreiben. © Felix Stete

Am neuen SFB 1636 „Elementarprozesse lichtgetriebener Reaktionen an nanoskaligen Metallen“ beteiligen sich mehrere Arbeitsgruppen aus dem HZB.

Nanoskalige Metalle in der Forschung

„Wir sind begeistert und freuen uns auf die neuen Synergien, die durch den neuen Sonderforschungsbereich entstehen können“, sagt Prof. Matias Bargheer, der einer der Sprecher des neuen SFB an der Universität Potsdam ist. Aus dem HZB sind die Arbeitsgruppen um Renske van der Veen, Yan Lu und Alexander Föhlisch eingebunden, zusätzlich zum Team von Bargheer, der an der Universität Potsdam und am HZB eine gemeinsame Forschungsgruppe leitet.

Das Forschungsvorhaben beschäftigt sich mit elementaren Prozessen, die lichtgesteuerte chemische Reaktionen an Metallen im Nanomaßstab auslösen. „An diesem faszinierenden Übergang zwischen Physik und Chemie sind noch viele Fragen unbeantwortet. Schon jetzt können wir unsere Konzepte auf organische Kupplungsreaktionen und Polymerisationen anwenden, z.B. um Nanopartikel asymmetrisch zu funktionalisieren“, beschreibt Prof. Dr. Matias Bargheer die Herausforderungen und Perspektiven ihrer gemeinsamen Forschung.

Antonia Rötger

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.