Sonderforschungsbereich „Nanoskalige Metalle“ wirbt 11 Millionen Euro ein

Licht wird durch den Nanopartikel fokussiert und die Energie lokal in verschiedene Formen umgewandelt, die dann Chemische Transformation antreiben.

Licht wird durch den Nanopartikel fokussiert und die Energie lokal in verschiedene Formen umgewandelt, die dann Chemische Transformation antreiben. © Felix Stete

Am neuen SFB 1636 „Elementarprozesse lichtgetriebener Reaktionen an nanoskaligen Metallen“ beteiligen sich mehrere Arbeitsgruppen aus dem HZB.

Nanoskalige Metalle in der Forschung

„Wir sind begeistert und freuen uns auf die neuen Synergien, die durch den neuen Sonderforschungsbereich entstehen können“, sagt Prof. Matias Bargheer, der einer der Sprecher des neuen SFB an der Universität Potsdam ist. Aus dem HZB sind die Arbeitsgruppen um Renske van der Veen, Yan Lu und Alexander Föhlisch eingebunden, zusätzlich zum Team von Bargheer, der an der Universität Potsdam und am HZB eine gemeinsame Forschungsgruppe leitet.

Das Forschungsvorhaben beschäftigt sich mit elementaren Prozessen, die lichtgesteuerte chemische Reaktionen an Metallen im Nanomaßstab auslösen. „An diesem faszinierenden Übergang zwischen Physik und Chemie sind noch viele Fragen unbeantwortet. Schon jetzt können wir unsere Konzepte auf organische Kupplungsreaktionen und Polymerisationen anwenden, z.B. um Nanopartikel asymmetrisch zu funktionalisieren“, beschreibt Prof. Dr. Matias Bargheer die Herausforderungen und Perspektiven ihrer gemeinsamen Forschung.

Antonia Rötger

  • Link kopieren

Das könnte Sie auch interessieren

  • Topologische Überraschungen beim Element Kobalt
    Science Highlight
    11.02.2026
    Topologische Überraschungen beim Element Kobalt
    Das Element Kobalt gilt als typischer Ferromagnet ohne weitere Geheimnisse. Ein internationales Team unter der Leitung von Dr. Jaime Sánchez-Barriga (HZB) hat nun jedoch komplexe topologische Merkmale in der elektronischen Struktur von Kobalt entdeckt. Spin-aufgelöste Messungen der Bandstruktur (Spin-ARPES) an BESSY II zeigten verschränkte Energiebänder, die sich selbst bei Raumtemperatur entlang ausgedehnter Pfade in bestimmten kristallographischen Richtungen kreuzen. Dadurch kann Kobalt als hochgradig abstimmbare und unerwartet reichhaltige topologische Plattform verstanden werden. Dies eröffnet Perspektiven, um magnetische topologische Zustände in Kobalt für künftige Informationstechnologien zu nutzen.
  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.
  • Bernd Rech in den BR50 Vorstand gewählt
    Nachricht
    30.01.2026
    Bernd Rech in den BR50 Vorstand gewählt
    Der wissenschaftliche Geschäftsführer des Helmholtz-Zentrum Berlin ist das neue Gesicht hinter der Unit „Naturwissenschaften“ beim Berlin Research 50 (BR50). Nach der Wahl im Dezember 2025 fand am 22. Januar 2026 die konstituierende Sitzung des neuen BR50-Vorstands statt.  Mitglieder sind Michael Hintermüller (Weierstrass Institute, WIAS), Noa K. Ha (Deutsches Zentrum für Integrations- und Migrationsforschung, DeZIM), Volker Haucke (Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP), Uta Bielfeldt (Deutsches Rheuma-Forschungszentrum Berlin, DRFZ) und Bernd Rech (HZB).