Quantencomputer: Gewissheit aus dem Zufall ziehen

Quantencomputer (hier ein Experiment am Technology Innovation Institute in Abu Dhabi) arbeiten bei sehr niedrigen Temperaturen, um Rauschen und unerwünschte Störungen zu minimieren. Mit einem neu entwickelten mathematischen Werkzeug ist es nun möglich, die Leistung eines Quantencomputers durch zufällige Testdaten zu bewerten und mögliche Fehler zu diagnostizieren.

Quantencomputer (hier ein Experiment am Technology Innovation Institute in Abu Dhabi) arbeiten bei sehr niedrigen Temperaturen, um Rauschen und unerwünschte Störungen zu minimieren. Mit einem neu entwickelten mathematischen Werkzeug ist es nun möglich, die Leistung eines Quantencomputers durch zufällige Testdaten zu bewerten und mögliche Fehler zu diagnostizieren.

Quantencomputer werden mit zunehmender Größe und Komplexität undurchschaubar. Mit Methoden der mathematischen Physik ist es nun einem Team gelungen, aus zufälligen Datensequenzen konkrete Zahlen abzuleiten, die als Maßstab für die Leistungsfähigkeit eines Quantencomputersystems dienen können. An der Arbeit mit Quantencomputer, die nun in Nature communications veröffentlicht ist, waren Experten des Helmholtz-Zentrum Berlin, der Freien Universität Berlin, des Qusoft Forschungszentrum Amsterdam, der Universität Kopenhagen sowie des Technology Innovation Institute Abu Dhabi beteiligt.

Mit Quantencomputern lassen sich insbesondere Quantensysteme deutlich effizienter berechnen und zum Beispiel Probleme in der Materialforschung lösen. Je größer und komplexer jedoch Quantencomputer werden, desto weniger lassen sich die Prozesse durchschauen, die zum Ergebnis führen. Um solche Quantenoperationen zu charakterisieren und die Fähigkeiten von Quantencomputern mit der klassischen Rechenleistung bei denselben Aufgaben fair zu vergleichen, werden daher passende Werkzeuge gebraucht. Ein solches Werkzeug mit überraschenden Talenten hat nun ein Team um Prof. Jens Eisert und Ingo Roth entwickelt.

Benchmarking von Quantencomputern

Roth, der aktuell am Technology Innovation Institute in Abu Dhabi eine Gruppe aufbaut, erläutert: „Aus den Ergebnissen zufällig gewählter Experimente können wir mit mathematischen Methoden nun viele verschiedene Zahlen extrahieren, die zeigen, wie nah die Operationen im statistischen Mittel an den gewünschten Operationen sind. Damit kann man aus den gleichen Daten viel mehr lernen als zuvor. Und zwar – das ist das Entscheidende – wächst die benötigte Datenmenge nicht linear sondern nur logarithmisch.“ Dies konnte das Team sogar mathematisch beweisen. Konkret bedeutet das: Um hundertmal so viel zu lernen, werden nur doppelt so viel Daten gebraucht. Eine enorme Verbesserung.

Eisert, der eine gemeinsame Forschungsgruppe zu theoretischer Physik am Helmholtz-Zentrum Berlin und der Freien Universität Berlin leitet, sagt: „Es geht hier um das Benchmarking von Quantencomputern. Wir haben gezeigt, wie man mit randomisierten Daten solche Systeme kalibrieren kann. Das ist eine sehr wichtige Arbeit für die Entwicklung von Quantencomputern.“

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als Wasserstoff-Speicher: Auf die Diffusionsprozesse kommt es an
    Science Highlight
    23.06.2025
    MXene als Wasserstoff-Speicher: Auf die Diffusionsprozesse kommt es an
    Für die Speicherung von Wasserstoff sind 2D-Materialien wie MXene von großem Interesse. Ein Experte aus dem HZB hat die Diffusion von Wasserstoff in MXene mittels Dichtefunktionaltheorie untersucht. Die Modellierungen liefern Einblicke in die wichtigsten Diffusionsmechanismen und die Wechselwirkung von Wasserstoff mit Ti3C2 MXene und liefern eine belastbare Grundlage für experimentelle Untersuchungen.
  • HZB und National University Kyiv-Mohyla-Akademie starten Zusammenarbeit im Bereich Energie und Klima
    Nachricht
    19.06.2025
    HZB und National University Kyiv-Mohyla-Akademie starten Zusammenarbeit im Bereich Energie und Klima
    Das Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB) und die Nationale Universität „Kiew-Mohyla-Akademie“ (NaUKMA) haben eine Absichtserklärung (Memorandum of Understanding, MoU) unterzeichnet. Das MoU dient als Ausgangspunkt für gemeinsame Forschung, akademischen Austausch und Kapazitätsaufbau zwischen den beiden Institutionen. Es werden Maßnahmen zur Einrichtung des Joint Research and Policy Laboratory an der NaUKMA in Kiew ergriffen. Ziel des künftigen Labors ist die gemeinsame Entwicklung von Forschung und Politikanalysen mit Schwerpunkt auf den Energie- und Klimaaspekten der EU-Integration der Ukraine.

  • MAX IV und BESSY II treiben Materialwissenschaften gemeinsam voran
    Nachricht
    17.06.2025
    MAX IV und BESSY II treiben Materialwissenschaften gemeinsam voran
    Das schwedische Synchrotron-Labor MAX IV und das Helmholtz-Zentrum Berlin (HZB) mit der Synchrotronstrahlungsquelle BESSY II haben am 16. Juni eine Kooperationsvereinbarung mit fünfjähriger Laufzeit unterzeichnet. Sie schafft den Rahmen für eine verstärkte Zusammenarbeit bei der operativen und technologischen Entwicklung in den Bereichen Beschleunigerforschung und -entwicklung, Strahlführungen und Optik, Experimentierstationen und Probenumgebungen sowie Digitalisierung und Datenwissenschaft.