Revolutionary material science: Helmholtz High Impact Award for Novel Tandem Solar Cells

Eva Unger (3. v.l., Helmholtz-Zentrum Berlin) und Michael Saliba (4. v.l., Forschungszentrum Jülich) nehmen stellvertretend für ihr Forschungsteam den ersten Helmholtz High Impact Award von Helmholtz-Präsident Otmar D.Wiestler (2. v.l.), Bundesforschungsministerin Bettina Stark-Watzinger (5. v.l.) und Laudatorin Carla Seidel (1. v.l., BASF) entgegen.

Eva Unger (3. v.l., Helmholtz-Zentrum Berlin) und Michael Saliba (4. v.l., Forschungszentrum Jülich) nehmen stellvertretend für ihr Forschungsteam den ersten Helmholtz High Impact Award von Helmholtz-Präsident Otmar D.Wiestler (2. v.l.), Bundesforschungsministerin Bettina Stark-Watzinger (5. v.l.) und Laudatorin Carla Seidel (1. v.l., BASF) entgegen. © Till Budde

A multidisciplinary team from Helmholtz-Zentrum Berlin (HZB) and Forschungszentrum Jülich (FZJ) is researching and improving novel tandem solar cells in order to bring them into application. For their approach and research achievements, Steve Albrecht, Antonio Abate and Eva Unger from HZB and Michael Saliba from FZJ received the High Impact Award on 27 September 2023. With the award, which comes with 50,000 euros in prize money, the Helmholtz Association and the Donors’ Association for the Promotion of Sciences and Humanities in Germany honour innovative approaches that have the potential to act as game-changers.

Current solar cells mostly use silicon to convert sunlight into electricity, but can only use a comparatively small part of the sun’s radiation for this purpose. The mineral perovskite, however, is much more efficient. Solar cells with a perovskite layer can absorb just as much light, but are up to 100 times thinner. This makes them particularly suitable for applications on curved surfaces, for example as foldable solar cells on cars or building facades. The layers can be produced from inexpensive materials and printed over large areas with little energy input using industrial technologies. If silicon and perovskite are combined, the performance can be increased even further. So far, however, these “tandem solar cells” face a number of challenges that prevent their widespread use: perovskites are not yet stable enough, they react sensitively to moisture or heat and disintegrate quickly. In addition, they contain lead – a substitute must be found for environmentally compatible application.

Steve Albrecht, Antonio Abate and Eva Unger from Helmholtz-Zentrum Berlin and Michael Saliba from Forschungszentrum Jülich are combining their expertise in electrical engineering, chemistry and physics to meet these challenges. With their research, they are making fundamental, pioneering contributions to enable the commercial and environmentally friendly production of perovskites for photovoltaics and other opto-electronic applications. With great success: Current research work by the team shows that perovskite silicon tandem solar cells can convert over 30 percent of solar energy into electricity so far. The team wants to make their research publicly accesible to the scientific community in order to make the results transparent and comparable.

The four researchers have now received the first Helmholtz High Impact Award for their approach and results. “The team led by Steve Albrecht and Eva Unger impressively demonstrates the strength of the Helmholtz Association: it combines different disciplines and works together across fundamental boundaries to tackle one of the greatest challenges of our time: energy transition. With their unique expertise and innovative strength, the four scientists are making a decisive contribution to advancing and shaping cutting-edge research in the field of photovoltaics. I warmly congratulate this young international team on their well-deserved High Impact Award,” says Helmholtz President Otmar D. Wiestler.

About the Helmholtz High Impact Award

Together with the Donors’ Association for the Promotion of Sciences and Humanities in Germany (Stifterverband für die Deutsche Wissenschaft), the Helmholtz Association is presenting the newly established “Helmholtz High Impact Award” for the first time this year. The award, which is endowed with 50,000 euros, recognises highly innovative interdisciplinary contributions that address a major challenge from science, industry or society. The focus is on new approaches that have the potential to act as a ‘game changer’ in a relevant problem area. The award ceremony took place at this year’s Helmholtz Annual Meeting on 27 September.

  • Copy link

You might also be interested in

  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.

  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.
  • Helmholtz Investigator Group on magnons
    News
    24.11.2025
    Helmholtz Investigator Group on magnons
    Dr Hebatalla Elnaggar is setting up a new Helmholtz Investigator Group at HZB. At BESSY II, the materials scientist will investigate so-called magnons in magnetic perovskite thin films. The aim is to lay the foundations for future terahertz magnon technology: magnonic devices operating in the terahertz range could process data using a fraction of the energy required by the most advanced semiconductor devices, and at speeds up to a thousand times faster.