Where quantum computers can score

The travelling salesman's problem is a classic in mathematics. A traveller is to visit N cities by the shortest route and return to the starting point. As the number N increases, the number of possible routes explodes. This problem can then be solved using approximation methods. Quantum computers could provide significantly better solutions more quickly.

The travelling salesman's problem is a classic in mathematics. A traveller is to visit N cities by the shortest route and return to the starting point. As the number N increases, the number of possible routes explodes. This problem can then be solved using approximation methods. Quantum computers could provide significantly better solutions more quickly. © HZB

The present work (arrow) shows that a certain part of the combinatorial problems can be solved much better with quantum computers, possibly even exactly.

The present work (arrow) shows that a certain part of the combinatorial problems can be solved much better with quantum computers, possibly even exactly. © HZB/Eisert

The travelling salesman problem is considered a prime example of a combinatorial optimisation problem. Now a Berlin team led by theoretical physicist Prof. Dr. Jens Eisert of Freie Universität Berlin and HZB has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.

Quantum computers use so-called qubits, which are not either zero or one as in conventional logic circuits, but can take on any value in between. These qubits are realised by highly cooled atoms, ions or superconducting circuits, and it is still physically very complex to build a quantum computer with many qubits. However, mathematical methods can already be used to explore what fault-tolerant quantum computers could achieve in the future. "There are a lot of myths about it, and sometimes a certain amount of hot air and hype. But we have approached the issue rigorously, using mathematical methods, and delivered solid results on the subject. Above all, we have clarified in what sense there can be any advantages at all," says Prof. Dr. Jens Eisert, who heads a joint research group at Freie Universität Berlin and Helmholtz-Zentrum Berlin.

The well-known problem of the travelling salesman serves as a prime example: A traveller has to visit a number of cities and then return to his home town. Which is the shortest route? Although this problem is easy to understand, it becomes increasingly complex as the number of cities increases and computation time explodes. The travelling salesman problem stands for a group of optimisation problems that are of enormous economic importance, whether they involve railway networks, logistics or resource optimisation. Good enough solutions can be found using approximation methods.

The team led by Jens Eisert and his colleague Jean-Pierre Seifert has now used purely analytical methods to evaluate how a quantum computer with qubits could solve this class of problems. A classic thought experiment with pen and paper and a lot of expertise. "We simply assume, regardless of the physical realisation, that there are enough qubits and look at the possibilities of performing computing operations with them," explains Vincent Ulitzsch, a PhD student at the Technical University of Berlin. In doing so, they unveiled similarities to a well-known problem in cryptography, i.e. the encryption of data. "We realised that we could use the Shor algorithm to solve a subclass of these optimisation problems," says Ulitzsch. This means that the computing time no longer "explodes" with the number of cities (exponential, 2N), but only increases polynomially, i.e. with Nx, where x is a constant. The solution obtained in this way is also qualitatively much better than the approximate solution using the conventional algorithm.

"We have shown that for a specific but very important and practically relevant class of combinatorial optimisation problems, quantum computers have a fundamental advantage over classical computers for certain instances of the problem," says Eisert.

arö

  • Copy link

You might also be interested in

  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.

  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.
  • Helmholtz Investigator Group on magnons
    News
    24.11.2025
    Helmholtz Investigator Group on magnons
    Dr Hebatalla Elnaggar is setting up a new Helmholtz Investigator Group at HZB. At BESSY II, the materials scientist will investigate so-called magnons in magnetic perovskite thin films. The aim is to lay the foundations for future terahertz magnon technology: magnonic devices operating in the terahertz range could process data using a fraction of the energy required by the most advanced semiconductor devices, and at speeds up to a thousand times faster.