Unconventional piezoelectricity in ferroelectric hafnia

The effect: polarisation and electric field are pointing in the same direction. With positive d33, the sample expands,  whereas the material is contracting when d33 is negative.

The effect: polarisation and electric field are pointing in the same direction. With positive d33, the sample expands,  whereas the material is contracting when d33 is negative. © Laura Canil

PFM phase images of a W/HZO/W-capacitor. The pristine sample shows a positive piezoelectric coefficient (left). After more than 8000 cycles of an ac-electric field, the piezoelectric coefficient has changed its sign and is negative (right). The polarization is pointing downwards in both images.

PFM phase images of a W/HZO/W-capacitor. The pristine sample shows a positive piezoelectric coefficient (left). After more than 8000 cycles of an ac-electric field, the piezoelectric coefficient has changed its sign and is negative (right). The polarization is pointing downwards in both images. © HZB

Hafnium oxide thin films are a fascinating class of materials with robust ferroelectric properties in the nanometre range. While their ferroelectric behaviour is extensively studied, results on piezoelectric effects have so far remained mysterious. A new study now shows that the piezoelectricity in ferroelectric Hf0.5Zr0.5O2 thin films can be dynamically changed by electric field cycling. Another ground-breaking result is a possible occurrence of an intrinsic non-piezoelectric ferroelectric compound. These unconventional features in hafnia offer new options for use in microelectronics and information technology.

Since 2011, it has been known that certain hafnium oxides, are ferroelectric, that is, they possess a spontaneous electric polarization whose direction can be switched to the opposite one by applying an external electric field.  All ferroelectrics exhibit piezoelectricity with, most often, a positive longitudinal piezoelectric coefficient (d33). This means that the crystal expands if the applied electric field is in the same direction than the electrical polarization. However, for hafnia, studies have shown contradictory results, with different hafnia films expanding or contracting in the same experimental conditions. Moreover, it seems that the ferroelectric polarization can apparently switch against the electrical field, which was named “anomalous” switching.

An international collaboration led by Prof. Dr. Catherine Dubourdieu, HZB, has now elucidated for the first time some aspects of these mysterious results and discovered an unconventional behaviour in hafnia. They investigated Hf0.5Zr0.5O2 (HZO) capacitors using piezoresponse force microscopy (PFM): a conductive needle scans the sample surface under a small electrical voltage and measures the local piezoelectric response.

Their study revealed that piezoelectricity in HZO is not an invariable parameter but is a dynamic entity that can be changed, in the very same material, by an external stimulus such as electrical cycling. The ferroelectric HZO capacitors undergo a complete uniform inversion of the piezoelectric d33 coefficient sign, from positive to negative, upon electric field cycling. Every single location of the ferroelectric capacitor undergoes such a change passing through zero local piezoelectricity upon suitable number of ac cycles.

Density functional theory (DFT) calculations suggest that the positive d33 in the initial state is due to a metastable polar orthorhombic phase that gradually evolves, under ac cycling, towards the fully developed stable polar phase with negative d33. The DFT calculations not only suggest a mechanism for the d33 sign inversion but also predict a groundbreaking result: a possible occurrence of an intrinsic non-piezoelectric ferroelectric compound, which is observed experimentally.

"For the first time, we have been able to experimentally observe a sign inversion of the piezoelectric effect in the whole area of a capacitor with these Hafnia Zirconia ferroelectrics under applied ac electric field,” Catherine Dubourdieu states. This discovery has enormous potential for technological applications. “As the piezoelectricity in these materials can be dynamically changed and even nullified while the polarisation remains robust, we see fantastic prospects for developing ferroelectric HfO2-based devices with electromechanical functionalities. Moreover, on a fundamental standpoint, the possibility of a non-piezoelectric ferroelectric compound would revolutionize our vision of ferroelectricity." says Catherine Dubourdieu.

arö

  • Copy link

You might also be interested in

  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.