Befruchtung unter dem Röntgenstrahl

© Joana C. Carvalho

Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.

Die Befruchtung bei Säugetieren beginnt, wenn sich ein Spermium an die Eihülle heftet: diese Hülle muss das Spermium durchdringen, um mit der Eizelle zu verschmelzen. Jetzt hat ein internationales Team die Struktur und Funktion des Proteins ZP2 im Detail entschlüsselt. ZP2 ist eine Komponente des Eihüllenfilaments, die eine Schlüsselrolle bei der Regulierung der Interaktion zwischen Ei- und Samenzelle bei der Befruchtung spielt.

"Es war bekannt, dass ZP2 gespalten wird, nachdem das erste Spermium in die Eizelle eingedrungen ist, und wir erklären, wie dieses Ereignis die Eihülle härter und undurchlässiger für andere Spermien macht", sagt Luca Jovine, Professor am Department of Biosciences and Nutrition, Karolinska Institutet, der die Studie leitete. "Dies verhindert Polyspermie - die Verschmelzung mehrerer Spermien mit einer einzigen Eizelle - was für den Embryo fatal ist“.

Einsatz von KI Alphafold

Die Forscher*innen kombinierten Röntgenkristallographie und Kryo-EM, um die 3D-Struktur der Eihüllenproteine zu untersuchen. Die Interaktion zwischen Spermien und Eiern, die Mutationen im ZP2-Protein tragen, wurde an Mäusen untersucht, während das KI-Programm AlphaFold verwendet wurde, um die Struktur der Eihülle beim Menschen vorherzusagen.

Die Studie wurde in Zusammenarbeit mit den Universitäten Osaka und Sophia in Japan und der Universität Pittsburgh in den USA durchgeführt, die Messdaten stammen aus Experimenten bei SciLifeLab und an den Röntgenquellen ESRF, DLS und BESSY II.

Karolinska Institutet

  • Link kopieren

Das könnte Sie auch interessieren

  • Wechselströme für alternatives Rechnen mit Magneten
    Science Highlight
    26.09.2024
    Wechselströme für alternatives Rechnen mit Magneten
    Eine neue Studie der Universität Wien, des Max-Planck-Instituts für Intelligente Systeme in Stuttgart und der Helmholtz-Zentren in Berlin und Dresden stellt einen wichtigen Schritt dar, Computerbauelemente weiter zu miniaturisieren und energieeffizienter zu machen. Die in der renommierten Fachzeitschrift Science Advances veröffentlichte Arbeit zeigt neue Möglichkeiten, reprogrammierbare magnetische Schaltungen zu schaffen, indem Spinwellen durch Wechselströme angeregt und bei Bedarf umgelenkt werden. Die Experimente dafür wurden an der Maxymus-Beamline an BESSY II durchgeführt.
  • BESSY II: Heterostrukturen für die Spintronik
    Science Highlight
    20.09.2024
    BESSY II: Heterostrukturen für die Spintronik
    Spintronische Bauelemente arbeiten mit magnetischen Strukturen, die durch quantenphysikalische Wechselwirkungen hervorgerufen werden. Nun hat eine Spanisch-Deutsche Kooperation Heterostrukturen aus Graphen-Kobalt-Iridium an BESSY II untersucht. Die Ergebnisse belegen, wie sich in diesen Heterostrukturen zwei erwünschte quantenphysikalische Effekte gegenseitig verstärken. Dies könnte zu neuen spintronischen Bauelementen aus solchen Heterostrukturen führen.
  • Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Science Highlight
    09.09.2024
    Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Die Materialklasse der MXene besitzt vielfältige Talente. Nun hat ein internationales Team um HZB-Chemikerin Michelle Browne gezeigt, dass MXene als Katalysatoren für die Sauerstoffentwicklungsreaktion bei der elektrolytischen Wasserspaltung geeignet sind. Dabei arbeiten sie stabiler und effizienter als die derzeit besten Metalloxid-Katalysatoren. Das Team hat die neuartigen Katalysatoren für die elektrolytische Aufspaltung von Wasser nun umfassend an der Berliner Röntgenquelle BESSY II und am Synchrotron Soleil, Frankreich, charakterisiert.