BESSY II: How pulsed charging enhances the service time of batteries

© stock.adobe.com

The illustration shows the ageing processes in NMC/graphite lithium-ion batteries during conventional charging (top image) and during charging with pulsed current (bottom image). Pulsed charging leads to significantly fewer cracks in the graphite and NMC particles. Also, the interface between the solid electrode and the liquid electrolyte (SEI) is thinner and has a different composition.

The illustration shows the ageing processes in NMC/graphite lithium-ion batteries during conventional charging (top image) and during charging with pulsed current (bottom image). Pulsed charging leads to significantly fewer cracks in the graphite and NMC particles. Also, the interface between the solid electrode and the liquid electrolyte (SEI) is thinner and has a different composition. © HZB/10.1002/aenm.202400190

An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.


Lithium-ion batteries are powerful, and they are used everywhere, from electric vehicles to electronic devices. However, their capacity gradually decreases over the course of hundreds of charging cycles. The best commercial lithium-ion batteries with electrodes made of so-called NMC532 (molecular formula: LiNi0.5Mn0.3Co0.2O2) and graphite have a service life of up to eight years. Batteries are usually charged with a constant current flow. But is this really the most favourable method? A new study by Prof Philipp Adelhelm's group at HZB and Humboldt-University Berlin answers this question clearly with no. The study in the journal Advanced Energy Materials analyses the effect of the charging protocol on the service time of the battery.

Ageing effects analysed

Part of the battery tests were carried out at Aalborg University. The batteries were either charged conventionally with constant current (CC) or with a new charging protocol with pulsed current (PC). Post-mortem analyses revealed clear differences after several charging cycles: In the CC samples, the solid electrolyte interface (SEI) at the anode was significantly thicker, which impaired the capacity. The team also found more cracks in the structure of the NMC532 and graphite electrodes, which also contributed to the loss of capacity. In contrast, PC-charging led to a thinner SEI interface and fewer structural changes in the electrode materials.

Synchrotron experiments at BESSY II and PETRA III

HZB researcher Dr Yaolin Xu then led the investigation into the lithium-ion cells at Humboldt University and BESSY II with operando Raman spectroscopy and dilatometry as well as X-ray absorption spectroscopy to analyse what happens during charging with different protocols. Supplementary experiments were carried out at the PETRA III synchrotron. "The pulsed current charging promotes the homogeneous distribution of the lithium ions in the graphite and thus reduces the mechanical stress and cracking of the graphite particles. This improves the structural stability of the graphite anode," he concludes. The pulsed charging also suppresses the structural changes of NMC532 cathode materials with less Ni-O bond length variation.

The pulse current frequency is crucial

However, it depends on the frequency of the pulsed current: the series of measurements with a high-frequency pulsed current extended the service life of the commercial lithium-ion battery analysed the most, up to doubling the cycle life (with 80% capacity retention). Co-author Prof. Dr Julia Kowal, an expert in electrical energy storage technology at TU Berlin, emphasises: "A good understanding of the influence of pulsed charging at different frequencies on the SEI layer will be very helpful for the development of more gentle charging processes."

arö

  • Copy link

You might also be interested in

  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • Joint Kyiv Energy and Climate Lab goes live
    News
    28.11.2025
    Joint Kyiv Energy and Climate Lab goes live
    Helmholtz-Zentrum Berlin and the National University of Kyiv-Mohyla Academy established on 27 November a Joint Energy and Climate Lab.