Clean cooking fuel with a great impact for southern Africa

Sabine Döring (2nd from right), State Secretary at the Federal Ministry of Education and Research (BMBF), learned about the GreenQUEST initiative during her visit to the University of Cape Town.

Sabine Döring (2nd from right), State Secretary at the Federal Ministry of Education and Research (BMBF), learned about the GreenQUEST initiative during her visit to the University of Cape Town. © UCT

More than 50 scientists from South Africa and Germany are working together in the interdisciplinary GreenQuest project.

More than 50 scientists from South Africa and Germany are working together in the interdisciplinary GreenQuest project. © UCT

Burning biomass for cooking causes harmful environmental and health issues. The German-South African GreenQUEST initiative is developing a clean household fuel. It aims to reduce climate-damaging CO2 emissions and to improve access to energy for households in sub-Saharan Africa.

In sub-Saharan Africa, almost one billion people have limited access to clean household energy. The widespread use of biomass (including firewood) as an energy source contributes to deforestation, soil erosion and carbon dioxide emissions.

The GreenQUEST project, funded by the German Federal Ministry of Education and Research (BMBF), aims to develop a green liquefied petroleum gas (LFG or gLFG) as an alternative to liquefied petroleum gas (LPG). The gLFG currently mirrors the efficiency and clean-burning qualities of LPG but without its fossil carbon burden. It is to be produced from green hydrogen, which is obtained using renewable energies, and carbon dioxide captured from the atmosphere.

The CO2-neutral fuel also promises better access to clean energy for low-income households in Africa. GreenQUEST is not only promoting the technical development of green LPG, but is also analysing the economic, environmental and social impact that a market launch of green LPG could have.

50 researchers from South Africa and Germany work hand in hand

More than 50 scientists from South Africa and Germany are working together on the interdisciplinary project. It is led by the Catalysis Institute of the University of Cape Town (UCT) and the Helmholtz Zentrum Berlin. This partnership promotes lasting relationships in the field of energy research and thus strengthens the strategic alliance between South Africa and Germany.

State Secretary of BMBF sees the potential for positive change globally

"The cooperative approach driving the GreenQUEST project has the potential to effect positive change not only in African communities but globally," said State Secretary in the Ministry of Education and Research (BMBF) Prof Dr Sabine Döring on the occasion of her visit to the University of Cape Town. "This exemplifies the commitment of Germany and South Africa to support sustainable initiatives, underscoring the importance of working together for the betterment of all."

red/sz

  • Copy link

You might also be interested in

  • Porous Radical Organic framework improves lithium-sulphur batteries
    Science Highlight
    15.09.2025
    Porous Radical Organic framework improves lithium-sulphur batteries
    A team led by Prof. Yan Lu, HZB, and Prof. Arne Thomas, Technical University of Berlin, has developed a material that enhances the capacity and stability of lithium-sulphur batteries. The material is based on polymers that form a framework with open pores (known as radical-cationic covalent organic frameworks or COFs). Catalytically accelerated reactions take place in these pores, firmly trapping polysulphides, which would shorten the battery life. Some of the experimental analyses were conducted at the BAMline at BESSY II.
  • Metallic nanocatalysts: what really happens during catalysis
    Science Highlight
    10.09.2025
    Metallic nanocatalysts: what really happens during catalysis
    Using a combination of spectromicroscopy at BESSY II and microscopic analyses at DESY's NanoLab, a team has gained new insights into the chemical behaviour of nanocatalysts during catalysis. The nanoparticles consisted of a platinum core with a rhodium shell. This configuration allows a better understanding of structural changes in, for example, rhodium-platinum catalysts for emission control. The results show that under typical catalytic conditions, some of the rhodium in the shell can diffuse into the interior of the nanoparticles. However, most of it remains on the surface and oxidises. This process is strongly dependent on the surface orientation of the nanoparticle facets.
  • KlarText Prize for Hanna Trzesniowski
    News
    08.09.2025
    KlarText Prize for Hanna Trzesniowski
    The chemist has been awarded the prestigious KlarText Prize for Science Communication by the Klaus Tschira Foundation.