Key role of nickel ions in the Simons process discovered

Ansammlungen von Nickel-Ionen bilden einen dunklen Film auf einer Anode. 

Ansammlungen von Nickel-Ionen bilden einen dunklen Film auf einer Anode.  © BAM

Researchers at the Federal Institute for Materials Research and Testing (BAM) and Freie Universität Berlin have discovered the exact mechanism of the Simons process for the first time. The interdisciplinary research team used the BESSY II light source at the Helmholtz Zentrum Berlin for this study.

The Simons process is of great importance for the production of fluoroorganic compounds and is used in the pharmaceutical, agrochemical, plastics production and electronics industries, among others. The process is named after its inventor, the American chemist Joseph H. Simons, and utilises an electrochemical process to synthesise fluoroorganic compounds. By passing a current through an electrolyte solution containing hydrogen fluoride at an anode and a cathode, fluorine-containing ions are formed which react with other ions or molecules in the solution to form the desired fluorine-containing compounds.

Although this process has been used for over 70 years, the exact mechanism of the Simons process has so far remained a mystery. All that was known was that a black film forms on the nickel anode during the electrolysis process. In order to be able to analyse this film more precisely, the interdisciplinary research team used the synchrotron source BESSY II at the Helmholtz-Zentrum Berlin for the first time. With the help of a specially developed measuring cell, it was possible to carry out in-situ measurements on the anode, which even allowed individual atoms to be observed during electrofluorination. The investigations revealed that centres of highly valent nickel ions are formed in the black layer during the Simons process, which are crucial for the success of electrofluorination.

This discovery makes it possible to specifically improve the Simons process and make it more efficient, which is of great importance for the chemical industry.

Source: Press Release of BAM

red/sz

  • Copy link

You might also be interested in

  • The twisted nanotubes that tell a story
    News
    09.12.2025
    The twisted nanotubes that tell a story
    In collaboration with scientists in Germany, EPFL researchers have demonstrated that the spiral geometry of tiny, twisted magnetic tubes can be leveraged to transmit data based on quasiparticles called magnons, rather than electrons.
  • Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    News
    05.12.2025
    Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (Georg-August-University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University). 
  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.