Key role of nickel ions in the Simons process discovered

Ansammlungen von Nickel-Ionen bilden einen dunklen Film auf einer Anode. 

Ansammlungen von Nickel-Ionen bilden einen dunklen Film auf einer Anode.  © BAM

Researchers at the Federal Institute for Materials Research and Testing (BAM) and Freie Universität Berlin have discovered the exact mechanism of the Simons process for the first time. The interdisciplinary research team used the BESSY II light source at the Helmholtz Zentrum Berlin for this study.

The Simons process is of great importance for the production of fluoroorganic compounds and is used in the pharmaceutical, agrochemical, plastics production and electronics industries, among others. The process is named after its inventor, the American chemist Joseph H. Simons, and utilises an electrochemical process to synthesise fluoroorganic compounds. By passing a current through an electrolyte solution containing hydrogen fluoride at an anode and a cathode, fluorine-containing ions are formed which react with other ions or molecules in the solution to form the desired fluorine-containing compounds.

Although this process has been used for over 70 years, the exact mechanism of the Simons process has so far remained a mystery. All that was known was that a black film forms on the nickel anode during the electrolysis process. In order to be able to analyse this film more precisely, the interdisciplinary research team used the synchrotron source BESSY II at the Helmholtz-Zentrum Berlin for the first time. With the help of a specially developed measuring cell, it was possible to carry out in-situ measurements on the anode, which even allowed individual atoms to be observed during electrofluorination. The investigations revealed that centres of highly valent nickel ions are formed in the black layer during the Simons process, which are crucial for the success of electrofluorination.

This discovery makes it possible to specifically improve the Simons process and make it more efficient, which is of great importance for the chemical industry.

Source: Press Release of BAM

red/sz

  • Copy link

You might also be interested in

  • Metallic nanocatalysts: what really happens during catalysis
    Science Highlight
    10.09.2025
    Metallic nanocatalysts: what really happens during catalysis
    Using a combination of spectromicroscopy at BESSY II and microscopic analyses at DESY's NanoLab, a team has gained new insights into the chemical behaviour of nanocatalysts during catalysis. The nanoparticles consisted of a platinum core with a rhodium shell. This configuration allows a better understanding of structural changes in, for example, rhodium-platinum catalysts for emission control. The results show that under typical catalytic conditions, some of the rhodium in the shell can diffuse into the interior of the nanoparticles. However, most of it remains on the surface and oxidises. This process is strongly dependent on the surface orientation of the nanoparticle facets.
  • Shedding light on insulators: how light pulses unfreeze electrons
    Science Highlight
    08.09.2025
    Shedding light on insulators: how light pulses unfreeze electrons
    Metal oxides are abundant in nature and central to technologies such as photocatalysis and photovoltaics. Yet, many suffer from poor electrical conduction, caused by strong repulsion between electrons in neighboring metal atoms. Researchers at HZB and partner institutions have shown that light pulses can temporarily weaken these repulsive forces, lowering the energy required for electrons mobility, inducing a metal-like behavior. This discovery offers a new way to manipulate material properties with light, with high potential to more efficient light-based devices.
  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.