Key role of nickel ions in the Simons process discovered

Ansammlungen von Nickel-Ionen bilden einen dunklen Film auf einer Anode. 

Ansammlungen von Nickel-Ionen bilden einen dunklen Film auf einer Anode.  © BAM

Researchers at the Federal Institute for Materials Research and Testing (BAM) and Freie Universität Berlin have discovered the exact mechanism of the Simons process for the first time. The interdisciplinary research team used the BESSY II light source at the Helmholtz Zentrum Berlin for this study.

The Simons process is of great importance for the production of fluoroorganic compounds and is used in the pharmaceutical, agrochemical, plastics production and electronics industries, among others. The process is named after its inventor, the American chemist Joseph H. Simons, and utilises an electrochemical process to synthesise fluoroorganic compounds. By passing a current through an electrolyte solution containing hydrogen fluoride at an anode and a cathode, fluorine-containing ions are formed which react with other ions or molecules in the solution to form the desired fluorine-containing compounds.

Although this process has been used for over 70 years, the exact mechanism of the Simons process has so far remained a mystery. All that was known was that a black film forms on the nickel anode during the electrolysis process. In order to be able to analyse this film more precisely, the interdisciplinary research team used the synchrotron source BESSY II at the Helmholtz-Zentrum Berlin for the first time. With the help of a specially developed measuring cell, it was possible to carry out in-situ measurements on the anode, which even allowed individual atoms to be observed during electrofluorination. The investigations revealed that centres of highly valent nickel ions are formed in the black layer during the Simons process, which are crucial for the success of electrofluorination.

This discovery makes it possible to specifically improve the Simons process and make it more efficient, which is of great importance for the chemical industry.

Source: Press Release of BAM

red/sz

  • Copy link

You might also be interested in

  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!
  • BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties in phosphorus. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
  • Did marine life in the palaeocene use a compass?
    Science Highlight
    20.10.2025
    Did marine life in the palaeocene use a compass?
    Some ancient marine organisms produced mysterious magnetic particles of unusually large size, which can now be found as fossils in marine sediments. An international team has succeeded in mapping the magnetic domains on one of such ‘giant magnetofossils’ using a sophisticated method at the Diamond X-ray source. Their analysis shows that these particles could have allowed these organisms to sense tiny variations in both the direction and intensity of the Earth’s magnetic field, enabling them to geolocate themselves and navigate across the ocean. The method offers a powerful tool for magnetically testing whether putative biological iron oxide particles in Mars samples have a biogenic origin.