From waste to value: The right electrolytes can enhance glycerol oxidation

The glycerol&rsquo;s hydroxyl groups are attracted to the Bi<sup>3+</sup> ions on the surface of the BiVO<sub>4</sub> photoanode. The electrolyte plays a decisive role in mediating these interactions.

The glycerol’s hydroxyl groups are attracted to the Bi3+ ions on the surface of the BiVO4 photoanode. The electrolyte plays a decisive role in mediating these interactions. © HZB

When biomass is converted into biodiesel, huge amounts of glycerol are produced as a by-product. So far, however, this by-product has been little utilised, even though it could be processed into more valuable chemicals through oxidation in photoelectrochemical reactors. The reason for this: low efficiency and selectivity. A team led by Dr Marco Favaro from the Institute for Solar Fuels at HZB has now investigated the influence of electrolytes on the efficiency of the glycerol oxidation reaction. The results can help to develop more efficient and environmentally friendly production processes.

 

In 2023, around 16 billion litres of biodiesel and HVO diesel were produced in the European Union*, based on maize, rapeseed, or partially on waste materials from agricultural production. A by-product of biodiesel production is glycerol, which can be used as a building block for the production of valuable chemicals such as dihydroxyacetone, formic acid, glyceraldehyde and glycolaldehyde via a glycerol oxidation reaction (GOR). Glycerol can be oxidised electrochemically in (photo)electrochemical (PEC) reactors, which are currently being developed in particular for the production of green hydrogen. However, this path in PEC-plants is still hardly exploited at present, even though it could significantly increase the economic efficiency of the PEC Power-to-X process, since the oxidation of glycerol requires a much lesser energy input than hydrogen production through water splitting, but at the same time produces more valuable chemicals.

Examining the influence of different electrolytes

Many studies have already investigated the role of photocatalysts in PEC electrolyzers, while the role of the electrolyte had not yet been systematically analysed. A team led by Dr Marco Favaro at the Institute for Solar Fuels has now unveiled the influence of electrolyte composition on the efficiency and stability of the glycerol oxidation.

They used a PEC cell with photoanodes made of nanoporous bismuth vanadate (BiVO4). They tested acidic electrolytes (pH = 2) with various cations and anions, including sodium nitrate (NaNO3), sodium perchlorate (NaClO4), sodium sulphate (Na2SO4), potassium sulphate (K2SO4) and potassium phosphate (KPi). "Our results showed that BiVO4 photoanodes perform best in NaNO3 and outperform the commonly used Na2SO4 in terms of photocurrent, stability, and production rates of high-quality glycerol oxidation reaction products," summarises Favaro.

Sodium nitrate performs best

The team also investigated the reasons for this difference in performance: their hypothesis is that the size of the ions, their different salting in/out capabilities (Hofmeister series), and their different pH buffering capacity play a role. "The composition of the electrolyte has a surprising clear effect on the glycerol oxidation efficiency, and we were able to observe this trend in both bismuth vanadate and polycrystalline platinum anodes," says PhD student Heejung Kong. This supports the assumption that these findings could generally apply to different materials and processes.

The choice of electrolyte is therefore of great importance for the efficiency and stability of glycerol oxidation. "Our research could help to convert biomass by-products into valuable chemicals more efficiently and to produce valuable chemicals from waste materials while minimising the impact on the environment," says Favaro.

Note: This work was supported by the European Innovation Council (EIC) via OHPERA project (grant agreement 101071010).

*Source:  https://de.statista.com/statistik/daten/studie/1179499/umfrage/produktion-von-biodiesel-und-erneuerbarem-diesel-eu/= 

arö

  • Copy link

You might also be interested in

  • Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Science Highlight
    12.08.2025
    Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Using a non-destructive method, a team at HZB investigated practical lithium-sulphur pouch cells with lean electrolyte for the first time. With operando neutron tomography, they could visualise in real-time how the liquid electrolyte distributes and wets the electrodes across multilayers during charging and discharging. These findings offer valuable insights into the cell failure mechanisms and are helpful to design compact Li-S batteries with a high energy density in formats relevant to industrial applications.
  • Self assembling monolayer can improve lead-free perovskite solar cells too
    Science Highlight
    04.08.2025
    Self assembling monolayer can improve lead-free perovskite solar cells too
    Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.
  • Long-term test shows: Efficiency of perovskite cells varies with the season
    Science Highlight
    21.07.2025
    Long-term test shows: Efficiency of perovskite cells varies with the season
    Scientists at HZB run a long-term experiment on the roof of a building at the Adlershof campus. They expose a wide variety of solar cells to the weather conditions, recording their performance over a period of years. These include perovskite solar cells, a new photovoltaic material offering high efficiency and low manufacturing costs. Dr Carolin Ulbrich and Dr Mark Khenkin evaluated four years of data and presented their findings in Advanced Energy Materials. This is the longest series of measurements on perovskite cells in outdoor use to date. The scientists found that standard perovskite solar cells perform very well during the summer months, even over several years, but decline in efficiency during the darker months.