Kleine Kraftpakete für ganz besonderes Licht

Ein gepulster Laser läuft mit dem Elektronenstrahl durch den MLS-U125-Undulator und erzeugt eine Energiemodulation. Derselbe Undulator dient bei den folgenden Durchgängen des Elektronenstrahls als Strahler. Die Undulatorstrahlung wird von einer schnellen Fotodiode erfasst, während der Laserpuls mit Hilfe eines elektrooptischen Schalters vom Erfassungspfad ferngehalten wird.

Ein gepulster Laser läuft mit dem Elektronenstrahl durch den MLS-U125-Undulator und erzeugt eine Energiemodulation. Derselbe Undulator dient bei den folgenden Durchgängen des Elektronenstrahls als Strahler. Die Undulatorstrahlung wird von einer schnellen Fotodiode erfasst, während der Laserpuls mit Hilfe eines elektrooptischen Schalters vom Erfassungspfad ferngehalten wird. © HZB/ Communications Physics

Jörg Feikes und Arnold Kruschinski im Kontrollraum von BESSY II und der MLS.

Jörg Feikes und Arnold Kruschinski im Kontrollraum von BESSY II und der MLS. © Ina Helms / HZB

Ein internationales Forschungsteam stellt in Nature Communications Physics das Funktionsprinzip einer neuen Quelle für Synchrotronstrahlung vor. Durch Steady-State-Microbunching (SSMB) sollen in Zukunft effiziente und leistungsstarke Strahlungsquellen für kohärente UV-Strahlung möglich werden. Das ist zum Beispiel für Anwendungen in der Grundlagenforschung, aber auch der Halbleiterindustrie sehr interessant.

Wenn ultraschnelle Elektronen um die Kurve fliegen, senden sie Licht aus – Synchrotronstrahlung. Das wird in so genannten Speicherringen genutzt, in denen Magnete die Elektronen auf eine geschlossene Bahn zwingen. Dieses Licht ist longitudinal inkohärent und besteht aus einem breiten Spektrum an Wellenlängen. Durch seine hohe Brillanz ist es ein vortreffliches Werkzeug für die Materialforschung. Durch Monochromatoren lassen sich zwar auch einzelne Wellenlängen aus dem Spektrum herauspicken aber dies reduziert die Strahlungsleistung um viele Größenordnungen auf Werte von wenigen Watt.

Auf die Größe kommt es an

Doch was wäre, wenn ein Speicherring stattdessen von sich aus monochromatisches, kohärentes Licht mit Leistungen von einigen Kilowatt, analog einem Hochleistungslaser, liefern würde? Auf diese Frage fanden der Physiker Alexander Chao und sein Doktorand Daniel Ratner 2010 eine Antwort: Werden die in einem Speicherring kreisenden Elektronenpakete kürzer als die Wellenlänge des von ihnen ausgesendeten Lichts, dann wird die emittierte Strahlung kohärent und dadurch millionenfach leistungsstärker.

„Dazu muss man wissen, dass die Elektronen in einem Speicherring nicht homogen verteilt kreisen“, erklärt Arnold Kruschinski, Doktorand am HZB und Hauptautor der Arbeit. „Sie bewegen sich in Paketen mit einer typischen Länge von etwa einem Zentimeter und einem Abstand von etwa 60 Zentimetern. Das ist sechs Größenordnungen mehr als die von Alexander Chao vorgeschlagenen Mikro-Bunche.“ Der chinesische Theoretiker Xiujie Deng hat für das Steady-State-Micro-Bunching-Projekt (SSMB) einen Satz von Einstellungen für einen bestimmten Typ von Kreisbeschleunigern definiert, die Isochrone oder „low-alpha“-Ringe. Mit diesen entstehen nach Wechselwirkung mit einem Laser viele kurze Teilchenpakete, deren Länge und Abstand nur einen Mikrometer beträgt.

Dass dies funktioniert, hat das Forschungsteam vom HZB, der Tsinghua University und der PTB bereits 2021 in einem Proof-of-Principle-Experiment nachgewiesen. Dafür nutzte es die Metrology Light Source (MLS) in Adlershof – den ersten für low-alpha Betrieb konzipierten Speicherring überhaupt. Das Team konnte nun in umfangreichen Experimenten die Theorie von Deng zur Generierung von Mikro-Bunchen vollständig verifizieren. „Für uns ist das ein wichtiger Schritt auf dem Weg zu einer neuartigen SSMB-Strahlenquelle“, sagt Arnold Kruschinski.

Der lange Weg zum Erfolg

Bis dahin wird es allerdings noch dauern, ist sich HZB-Projektleiter Jörg Feikes sicher. Er sieht beim SSMB viele Parallelen zur Entwicklung der Freie-Elektronen-Laser. „Nach ersten Experimenten und Jahrzehnten Entwicklungsarbeit sind aus dieser Idee dann kilometerlange, supraleitende Beschleuniger geworden“, sagt er. „Solche Entwicklungen sind sehr langfristig. Am Anfang steht eine Idee, dann eine Theorie, und dann kommen Experimentatoren, die das nach und nach umsetzen und ich denke, dass sich SSMB genauso entwickeln wird.“

Kai Dürfeld / Wissenschaftsjournalist

  • Link kopieren

Das könnte Sie auch interessieren

  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.
  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.