BESSY II: Heterostructures for Spintronics

Symbolic illustration of a graphene layer on a microchip. In combination with a heavy-metal thin film and ferromagnetic monolayers, graphene could enable spintronic devices.

Symbolic illustration of a graphene layer on a microchip. In combination with a heavy-metal thin film and ferromagnetic monolayers, graphene could enable spintronic devices. © Dall-E/arö

Spintronic devices work with spin textures caused by quantum-physical interactions. A Spanish-German collaboration has now studied graphene-cobalt-iridium heterostructures at BESSY II. The results show how two desired quantum-physical effects reinforce each other in these heterostructures. This could lead to new spintronic devices based on these materials.

 

Spintronics uses the spins of electrons to perform logic operations or store information. Ideally, spintronic devices could operate faster and more energy-efficiently than conventional semiconductor devices. However, it is still difficult to create and manipulate spin textures in materials.

Graphene for Spintronics

Graphene, a two-dimensional honeycomb structure build by carbon atoms, is considered an interesting candidate for spintronic applications. Graphene is typically deposited on a thin film of heavy metal. At the interface between graphene and heavy metal, a strong spin-orbit coupling develops, which gives rise to different quantum effects, including a spin-orbit splitting of energy levels (Rashba effect) and a canting in the alignment of spins (Dzyaloshinskii-Moriya interaction). Especially the spin canting effect is needed to stabilise vortex-like spin textures, known as skyrmions, which are particularly suitable for spintronics.

Plus Cobalt Monolayers

Now, however, a Spanish-German team has shown that these effects are significantly enhanced when a few monolayers of the ferromagnetic element cobalt are inserted between the graphene and the heavy metal (here: iridium). The samples were grown on insulating substrates which is a necessary prerequisite for the implementation of multifunctional spintronic devices exploiting these effects.

Interactions observed

‘At BESSY II, we have analysed the electronic structures at the interfaces between graphene, cobalt and iridium,’ says Dr. Jaime Sánchez-Barriga, a physicist at HZB. The most important finding: contrary to expectations, the graphene interacts not only with the cobalt, but also through the cobalt with the iridium. ‘The interaction between the graphene and the heavy metal iridium is mediated by the ferromagnetic cobalt layer,’ Sánchez-Barriga explains. The ferromagnetic layer enhances the splitting of the energy levels. ‘We can influence the spin-canting effect by the number of cobalt monolayers; three monolayers are best,’ says Sanchez-Barriga.

This result is supported not only by experimental data, but also by new calculations using density functional theory conducted at Forschungszentrum Jülich. The fact that both quantum effects influence and reinforce each other is new and unexpected.

SPIN-ARPES at BESSY II

‘We were only able to obtain these new insights because BESSY II offers extremely sensitive instruments for measuring photoemission with spin resolution (Spin-ARPES). This leads to the fortunate situation that we can determine the assumed origin of the spin canting, i. e., the Rashba-type spin-orbit splitting, very precisely, probably even more precisely than the spin canting itself.,’ emphasises Prof. Oliver Rader, who heads the “Spin and Topology in Quantum Materials” department at HZB. There are only a very few institutions worldwide that have instruments with these capabilities. The results show that graphene-based heterostructures have great potential for the next generation of spintronic devices.

arö

  • Copy link

You might also be interested in

  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.