Ultrafast dissociation of molecules studied at BESSY II

The X-ray photons trigger a ‘molecular catapult effect’: light atomic groups are ejected first, similar to projectiles shot from a catapult, while the heavier atoms – bromine and chlorine – separate much more slowly. The image was printed on the cover of "The Journal of Physical Chemistry Letters".

The X-ray photons trigger a ‘molecular catapult effect’: light atomic groups are ejected first, similar to projectiles shot from a catapult, while the heavier atoms – bromine and chlorine – separate much more slowly. The image was printed on the cover of "The Journal of Physical Chemistry Letters". © The Journal of Physical Chemistry Letters

For the first time, an international team has tracked at BESSY II how heavy molecules – in this case bromochloromethane – disintegrate into smaller fragments when they absorb X-ray light. Using a newly developed analytical method, they were able to visualise the ultrafast dynamics of this process. In this process, the X-ray photons trigger a "molecular catapult effect": light atomic groups are ejected first, similar to projectiles fired from a catapult, while the heavier atoms - bromine and chlorine - separate more slowly.

 

When X-rays hit molecules, they can knock electrons out of certain orbitals and into extremely high-energy states, breaking chemical bonds. This often happens ultra rapidly, in just a few femtoseconds (10-15 s). While this phenomenon has been studied in light molecules such as ammonia, oxygen, hydrochloric acid or simple carbon compounds, it has hardly been studied in molecules with heavier atoms.

A team from France and Germany has now studied the rapid decay of molecules containing halogens. They focused on a molecule in which bromine and chlorine atoms are linked by a light bridge - an alkylene group (CH2). The measurements were made at the XUV beamline of BESSY II.

The absorption of the X-rays caused molecular bonds to break, creating ionic fragments that could be analysed. The scientists were able to produce a visualisation from the measurement data. It shows how the atoms move in the fleeting intermediate states just before the bonds break. To do this, the team developed a new method of analysis called IPA (Ion Pair Average) and combined it with ab initio theoretical calculations to reconstruct the processes.

The results show that light groups of atoms such as CH2 are ejected first, while the heavier atoms - bromine and chlorine - are left behind and therefore separate more slowly. Interestingly, this catapult-like behaviour only occurs at certain X-ray energies. Theoretical simulations, in agreement with experimental observations, emphasise the crucial role of vibrations of the lighter groups of atoms in triggering these ultrafast reactions.

“This study highlights the unique dynamics of molecular dissociation upon X-ray irradiation," says Dr Oksana Travnikova (CNRS, Université Sorbonne, France), first author of the study now published in J. Phys. Chem. Lett. In particular, it shows that the catapult-like motion of light groups initiates the separation of heavy fragments, a process that unfolds in a remarkably short time. These findings could deepen our understanding of chemical reactions at the molecular level and how high-energy radiation affects complex molecules.

CCdM/arö

  • Copy link

You might also be interested in

  • Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    News
    05.12.2025
    Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (Georg-August-University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University). 
  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.