Two Humboldt-Fellows join HZB
Humboldt-Fellow Kazuki Morita (left) joined the team of Antonio Abate to advance solar energy research. Qingping Wu (right) works on battery stability with Prof. Yan Lu within his Humboldt-Fellowship. Both will stay until mid 2026. © privat
In 2024, two young scientists joined HZB as Humboldt Fellows. Kazuki Morita joined Prof. Antonio Abate's group and brings his expertise in modelling and data analysis to solar energy research. Qingping Wu is an expert in battery research and works with Prof. Yan Lu on high energy density lithium metal batteries.
“I chose to come to HZB because of its outstanding reputation in materials and energy research and the opportunity to work with Prof. Yan Lu and her team on cutting-edge electrochemical storage technologies,” says Qingping Wu. A chemist by training, Wu completed his PhD in chemical engineering in 2021 and worked as an assistant professor at the Chongqing Institute of Green and Intelligent Technology in China. He joined HZB in August 2024 and will stay until the end of July 2026. His research focuses on aging mechanisms and optimisation of electrode/electrolyte interfaces for high energy density lithium metal batteries.
Kazuki Morita earned his PhD from the Department of Materials, Imperial College London, UK, in 2022. He was a postdoctoral scientist at the Department of Chemistry, University of Pennsylvania, USA before joining the team of Prof. Antonio Abate with a Humboldt-Fellowship in May 2024 for the next two years. “I have been reading papers from HZB including ones from Antonio's since I was a PhD student. HZB is an ideal environment to pursue my research,” he says. He will study the stability of tin halide perovskites. “In particular, I will investigate the tin oxidation process using theory and simulations, which is my area of expertise. Prof. Antonio Abate primarily focuses mainly on experiments, so our expertise is complementary,” he says.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=28746;sprache=en
- Copy link
-
Self assembling monolayer can improve lead-free perovskite solar cells too
Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.
-
Berlin Science Award goes to Philipp Adelhelm
Battery researcher Prof. Dr. Philipp Adelhelm has been awarded the 2024 Berlin Science Award. He is a professor at the Institute of Chemistry at Humboldt University in Berlin (HU) and heads a joint research group at HU and the Helmholtz Zentrum Berlin (HZB). The materials scientist and electrochemist is investigating sustainable batteries, which play a key role in the success of the energy transition. He is one of the leading international experts in the field of sodium-ion batteries.
-
Scrolls from Buddhist shrine virtually unrolled at BESSY II
The Mongolian collection of the Ethnological Museum of the National Museums in Berlin contains a unique Gungervaa shrine. Among the objects found inside were three tiny scrolls, wrapped in silk. Using 3D X-ray tomography, a team at HZB was able to create a digital copy of one of the scrolls. With a mathematical method the scroll could be virtually unrolled to reveal the scripture on the strip. This method is also used in battery research.