Zwei Humboldt-Fellows am HZB

Dr. Kazuki Morita (links) forscht im Team von Antonio Abate an bleifreien Perowskit-Solarzellen. Dr. Qingping Wu (rechts) arbeitet mit Prof. Yan Lu an der Stabilität von Batterien. Beide Wissenschaftler sind Fellows der Alexander von Humboldt-Stiftung und bleiben bis Mitte 2026.

Dr. Kazuki Morita (links) forscht im Team von Antonio Abate an bleifreien Perowskit-Solarzellen. Dr. Qingping Wu (rechts) arbeitet mit Prof. Yan Lu an der Stabilität von Batterien. Beide Wissenschaftler sind Fellows der Alexander von Humboldt-Stiftung und bleiben bis Mitte 2026. © privat

Zwei junge Wissenschaftler sind zurzeit als Humboldt-Postdoktoranden am HZB tätig. Kazuki Morita bringt seine Expertise in Modellierung und Datenanalyse in die Solarenergieforschung im Team von Prof. Antonio Abate ein. Qingping Wu ist Experte für Batterieforschung und arbeitet mit Prof. Yan Lu zusammen an Lithium-Metall-Batterien mit hoher Energiedichte.

„Ich habe mich für das HZB entschieden, weil es einen hervorragenden Ruf in der Material- und Energieforschung hat und ich die Möglichkeit habe, mit Prof. Yan Lu und ihrem Team an innovativen elektrochemischen Speichertechnologien zu arbeiten“, sagt Qingping Wu. Wu schloss 2021 seine Promotion in Chemieingenieurwesen ab, anschließend arbeitete er als Assistenzprofessor am Chongqing Institute of Green and Intelligent Technology in China. Im August 2024 kam er mit einem Postdoktoranden-Stipendium der Alexander von Humboldt-Stiftung ans HZB. Seine Forschung dreht sich um Alterungsmechanismen und die Optimierung von Elektroden/Elektrolyt-Grenzflächen für Lithium-Metall-Batterien mit hoher Energiedichte.

Kazuki Morita erhielt 2022 seinen Doktortitel am Department of Materials des Imperial College London, Großbritannien. Er forschte im Anschluss als Postdoc am Department of Chemistry der University of Pennsylvania, USA, bevor er im Mai 2024 mit einem Humboldt-Stipendium für die nächsten zwei Jahre dem Team von Prof. Antonio Abate beitrat. „Seit meiner Zeit als Doktorand lese ich Veröffentlichungen des HZB, darunter auch die von Antonio. Das HZB ist ein ideales Umfeld für meine Forschung“, sagt er. Sein Thema ist die Stabilität von Zinnhalogenid-Perowskiten. "Insbesondere werde ich den Zinn-Oxidationsprozess mithilfe von Theorie und Simulationen untersuchen, während Antonio Abate sich hauptsächlich auf experimentelle Forschung konzentriert, sodass sich unsere Fachgebiete hervorragend ergänzen", sagt er.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.
  • Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.