Catalyst Activation and Degradation in Hydrous Iridium Oxides

© FHI/OpenAI

The development of efficient catalysts for the Oxygen Evolution Reaction (OER) is crucial for advancing Proton Exchange Membrane (PEM) water electrolysis, with iridium-based OER catalysts showing promise despite the challenges related to their dissolution. Collaborative research by the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH and the Fritz-Haber-Institut has provided insights into the mechanisms of OER performance and iridium dissolution for amorphous hydrous iridium oxides, advancing the understanding of this critical process.

Water electrolysis is a cornerstone of global sustainable and renewable energy systems, facilitating the production of hydrogen fuel. This clean and versatile energy carrier can be utilized in various applications, such as chemical CO₂ conversion, and electricity generation. Utilizing renewable energy sources such as solar and wind to power the electrolysis process may help reducing carbon emissions and promoting the transition to a low-carbon economy.

The development of efficient and stable anode materials for the Oxygen Evolution Reaction (OER) is essential for advancing Proton Exchange Membrane (PEM) water electrolysis technology. OER is a key electrochemical reaction that generates oxygen gas (O₂) from water (H₂O) or hydroxide ions (OH⁻) during water splitting. This seemingly simple reaction is crucial in energy conversion technologies like water electrolysis, as it is hard to efficiently realize and is a concurrent process to the desired hydrogen production. Iridium (Ir)-based materials, particularly amorphous hydrous iridium oxide (am-hydr-IrOx), are at the forefront of this research due to their high activity. However, their application is limited by the high dissolution rates of the precious iridium.

A collaborative effort led by scientists from the Department of Interface Design at the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH and the Theory Department at the Fritz-Haber-Institut der Max-Planck-Gesellschaft provided now fundamental insights into the intertwined mechanisms of OER and Ir dissolution in amorphous, hydrous iridium oxides (am-hydr-IrOx). Traditionally, the understanding of these processes has been limited by reliance on crystalline iridium oxide models. In this joint effort, Hydrous Iridium Oxide Thin Films (HIROFs) was explored as a model system, which revealed a unique iridium suboxide species associated with high OER activity. In situ X-ray photoelectron and X-ray absorption spectroscopy at BESSY II and ALBA synchrotrons and Density Functional Theory (DFT) was employed to investigate the local electronic and geometric structures of these materials under operating conditions, leading to the introduction of a novel surface H-terminated nanosheet model. This model better represents the short-range structure of am-hydr-IrOx, revealing elongated Ir-O bond lengths compared to traditional crystalline models.

Moreover, Ir dissolution was identified as a spontaneous, thermodynamically driven process, already occurring at potentials lower than OER activation, while the prevalent mechanistic picture assumes degradation to be driven by rare events during OER. This discovery required the development of a new mechanistic framework to describe Ir dissolution through the formation of Ir defects. The study also offered insights into the relationship between activity and stability of am-hydr-IrOx by systematically analyzing the DFT-calculated OER activity across different Ir and O chemical environments.

Overall, the current research results challenge conventional perceptions of iridium dissolution and OER mechanisms, offering an alternative dual-mechanistic framework. By examining a highly active and porous catalyst with a singular hydroxylated Ir suboxide species, the study develops a nanosheet atomistic model that surpasses conventional crystal-based models. This research not only challenges traditional understanding but also offers a new atomistic perspective on the delicate relationship between OER activity and durability of precious metal oxide catalysts. The findings are expected to be broadly applicable, potentially guiding the development of more efficient and stable anode materials for advancing PEM.

Giulia Glorani/ FHI

  • Copy link

You might also be interested in

  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.

  • Susanne Nies appointed to EU advisory group on Green Deal
    News
    12.11.2025
    Susanne Nies appointed to EU advisory group on Green Deal
    Dr. Susanne Nies heads the Green Deal Ukraina project at HZB, which aims to support the development of a sustainable energy system in Ukraine. The energy expert has now also been appointed to the European Commission's scientific advisory group to comment on regulatory burdens in connection with the net-zero target (DG GROW).

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.