Katalysatoraktivierung und -abbau in hydrierten Iridiumoxiden

© FHI/OpenAI

Die Entwicklung effizienter Katalysatoren für die Sauerstoffentwicklung (OER) ist entscheidend für den Fortschritt der Protonenaustauschmembran (PEM)-Wasserelektrolyse, wobei Iridium-basierte OER-Katalysatoren trotz der Herausforderungen im Zusammenhang mit ihrer Auflösung vielversprechend sind. Eine gemeinsame Forschung des Helmholtz-Zentrums Berlin und des Fritz-Haber-Instituts hat Einblicke in die Mechanismen der OER-Leistung und der Iridiumauflösung für amorphe hydrierte Iridiumoxide geliefert und das Verständnis dieses kritischen Prozesses vorangetrieben. Messungen an BESSY II haben dazu wesentliche Erkenntnisse geliefert.

Die Wasserelektrolyse ist ein zentraler Bestandteil globaler nachhaltiger und erneuerbarer Energiesysteme und ermöglicht die Produktion von Wasserstoff als Brennstoff. Dieser saubere und vielseitige Energieträger kann in verschiedenen Anwendungen genutzt werden, wie etwa bei der chemischen CO2-Umwandlung und der Stromerzeugung. Der Einsatz erneuerbarer Energiequellen wie Solar- und Windenergie zur Stromversorgung des Elektrolyseprozesses kann dazu beitragen, die Kohlenstoffemissionen zu reduzieren und den Übergang zu einer kohlenstoffarmen Wirtschaft zu fördern.

Die Entwicklung effizienter und stabiler Anodenmaterialien für die Sauerstoffentwicklung (Oxygen Evolution Reaction, OER) ist entscheidend für den Fortschritt der Protonenaustauschmembran (PEM)-Wasserelektrolyse-Technologie. Die OER ist eine zentrale elektrochemische Reaktion, die Sauerstoffgas (O₂) aus Wasser (H₂O) oder Hydroxidionen (OH⁻) während der Wasserspaltung erzeugt. Diese scheinbar einfache Reaktion ist in Energiewandlungstechnologien wie der Wasserelektrolyse von entscheidender Bedeutung, da sie schwer effizient zu realisieren ist und ein gleichzeitiger Prozess zur gewünschten Wasserstoffproduktion darstellt. Iridium (Ir)-basierte Materialien, insbesondere amorphe hydrierte Iridiumoxide (am-hydr-IrOx), stehen im Mittelpunkt dieser Forschung aufgrund ihrer hohen Aktivität. Ihre Anwendung wird jedoch durch hohe Auflösungsraten des kostbaren Iridiums begrenzt.

Eine gemeinsame Anstrengung von Wissenschaftler*innen der Abteilung Interface Design am Helmholtz-Zentrum Berlin für Materialien und Energie GmbH und der Theorieabteilung am Fritz-Haber-Institut der Max-Planck-Gesellschaft hat nun grundlegende Einblicke in die miteinander verknüpften Mechanismen der OER und der Ir-Auflösung in amorphen, hydrierten Iridiumoxiden (am-hydr-IrOx) geliefert. Traditionell war das Verständnis dieser Prozesse durch die Abhängigkeit von kristallinen Iridiumoxidmodellen begrenzt. In dieser gemeinsamen Anstrengung wurden hydrierte Iridiumoxid-Dünnschichten (HIROFs) als Modellsystem untersucht, das eine einzigartige Iridiumsuboxid-Spezies mit hoher OER-Aktivität aufdeckte. In situ Röntgenphotoelektronen- und Röntgenabsorptionsspektroskopie an den Synchrotronen BESSY II und ALBA sowie die Dichtefunktionaltheorie (DFT) wurden eingesetzt, um die lokalen elektronischen und geometrischen Strukturen dieser Materialien unter Betriebsbedingungen zu untersuchen, was zur Einführung eines neuartigen Oberflächenmodells mit H-terminierten Nanoschichten führte. Dieses Modell repräsentiert besser die kurzreichweitige Struktur von am-hydr-IrOx und zeigt verlängerte Ir-O-Bindungslängen im Vergleich zu traditionellen kristallinen Modellen.

Darüber hinaus wurde die Ir-Auflösung als spontaner, thermodynamisch getriebener Prozess identifiziert, der bereits bei Potenzialen unterhalb der OER-Aktivierung auftritt, während das vorherrschende mechanistische Bild davon ausgeht, dass der Abbau durch seltene Ereignisse während der OER getrieben wird. Diese Entdeckung erforderte die Entwicklung eines neuen mechanistischen Rahmens zur Beschreibung der Ir-Auflösung durch die Bildung von Ir-Defekten. Die Studie bot auch Einblicke in die Beziehung zwischen Aktivität und Stabilität von am-hydr-IrOx, indem systematisch die DFT-berechnete OER-Aktivität in verschiedenen Ir- und O-Chemieumgebungen analysiert wurde.

Insgesamt stellen die aktuellen Forschungsergebnisse konventionelle Wahrnehmungen der Iridiumauflösung und OER-Mechanismen in Frage und bieten einen alternativen dual-mechanistischen Rahmen. Durch die Untersuchung eines hochaktiven und porösen Katalysators mit einer einzigartigen hydroxilierten Ir-Suboxid-Spezies entwickelt die Studie ein nanoskaliges atomistisches Modell, das konventionelle kristallbasierte Modelle übertrifft.

Diese Forschung stellt nicht nur das traditionelle Verständnis in Frage, sondern bietet auch eine neue atomistische Perspektive auf die empfindliche Beziehung zwischen OER-Aktivität und Haltbarkeit von Edelmetalloxidkatalysatoren. Die Ergebnisse dürften breit anwendbar sein und möglicherweise die Entwicklung effizienterer und stabilerer Anodenmaterialien zur Förderung der PEM-Technologie leiten.

Giulia Glorani/ FHI

  • Link kopieren

Das könnte Sie auch interessieren

  • Was die Zinkkonzentration in Zähnen verrät
    Science Highlight
    19.02.2026
    Was die Zinkkonzentration in Zähnen verrät
    Zähne sind Verbundstrukturen aus Mineralien und Proteinen, dabei besteht der Großteil des Zahns aus Dentin, einem knochenartigen, hochporösen Material. Diese Struktur macht Zähne sowohl stark als auch empfindlich. Neben Kalzium und Phosphat enthalten Zähne auch Spurenelemente wie Zink. Mit komplementären mikroskopischen Verfahren hat ein Team der Charité Berlin, der TU Berlin und des HZB die Verteilung von natürlichem Zink im Zahn ermittelt. Das Ergebnis: mit zunehmender Porosität des Dentins in Richtung Pulpa steigt die Zinkkonzentration um das 5- bis 10-fache. Diese Erkenntnis hilft, den Einfluss von zinkhaltigen Füllungen auf die Zahngesundheit besser zu verstehen und könnte Verbesserungen in der Zahnmedizin anstoßen.
  • Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Nachricht
    12.02.2026
    Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Das Bayerische Landesamt für Denkmalpflege (BLfD) hat ein besonderes Fundstück aus der mittleren Bronzezeit nach Berlin geschickt, um es mit modernsten Methoden zerstörungsfrei zu untersuchen: Es handelt sich um ein mehr als 3400 Jahre altes Bronzeschwert, das 2023 im schwäbischen Nördlingen bei archäologischen Grabungen zutage trat. Die Expertinnen und Experten konnten herausfinden, wie Griff und Klinge miteinander verbunden sind und wie die seltenen und gut erhaltenen Verzierungen am Knauf angefertigt wurden – und sich so den Handwerkstechniken im Süddeutschland der Bronzezeit annähern. Zum Einsatz kamen eine 3D-Computertomographie und Röntgendiffraktion zur Eigenspannungsanalyse am Helmholtz-Zentrum Berlin (HZB) sowie die Röntgenfluoreszenz-Spektroskopie bei einem von der Bundesanstalt für Materialforschung und -prüfung (BAM) betreuten Strahlrohr an BESSY II.
  • Topologische Überraschungen beim Element Kobalt
    Science Highlight
    11.02.2026
    Topologische Überraschungen beim Element Kobalt
    Das Element Kobalt gilt als typischer Ferromagnet ohne weitere Geheimnisse. Ein internationales Team unter der Leitung von Dr. Jaime Sánchez-Barriga (HZB) hat nun jedoch komplexe topologische Merkmale in der elektronischen Struktur von Kobalt entdeckt. Spin-aufgelöste Messungen der Bandstruktur (Spin-ARPES) an BESSY II zeigten verschränkte Energiebänder, die sich selbst bei Raumtemperatur entlang ausgedehnter Pfade in bestimmten kristallographischen Richtungen kreuzen. Dadurch kann Kobalt als hochgradig abstimmbare und unerwartet reichhaltige topologische Plattform verstanden werden. Dies eröffnet Perspektiven, um magnetische topologische Zustände in Kobalt für künftige Informationstechnologien zu nutzen.