Innovative Catalyst Platform Advances Understanding of Working Catalysts

© FHI

A novel catalyst platform, known as Laterally Condensed Catalysts (LCC), has been developed to enable design and analysis of the functional interface connecting the active mass to its support. This interface not only influences the chemical properties of the reactive interface but also controls its stability and hence the sustainability of the catalytic materials. The development was significantly supported by the use of operando spectroscopy at the BESSY II synchrotron, which made it possible to observe and understand the dynamic processes and structures under reaction conditions.

Unrestrained combinations in composition between active phase and support enable for example direct energy transfer to the reactive interface in electrocatalysis or electrical heating. The physical synthesis methodology within the FHI-HZB CatLab project, taken from solar cell technology, gives access to precise and homogeneous structures and chemistry. This facilitates the mechanistic understanding of working catalysts and their subsequent optimization through interrogating reactive and functional interfaces by operando spectroscopy. The thin film catalysts studied here were synthesized with the objective of designing the interface structure of performance catalysts and closing the material gap between model and real-world powder catalysts while minimizing the use of noble metals. Its unique flat and densely packed structure (LCC) enables to achieve a homogeneous high density of surface active sites, minimizing the content of material present in the “bulk” or subsurface of the active catalysts with benefical effects on the selelctivity of the catalyzed reaction.

This effort is detailed in a study published in Nature Communications, entitled "Rationally Designed Laterally-Condensed-Catalysts Deliver Robust Activity and Selectivity for Ethylene Production in Acetylene Hydrogenation." The study is part of the CatLab Project, a collaboration prominently involving the Fritz Haber Institute of the Max Planck Society (FHI), the Helmholtz-Zentrum Berlin für Materialien und Energie and the Max Planck Institute for Chemical Energy Conversion. The CatLab Project is funded by Federal Ministry of Education and Research (BMBF).

Read more here (FHI) >

FHI

  • Copy link

You might also be interested in

  • AI re-examines dinosaur footprints
    Science Highlight
    27.01.2026
    AI re-examines dinosaur footprints
    For decades, paleontologists have pondered over mysterious three-toed dinosaur footprints. Were they left by fierce carnivores, gentle plant-eaters, or even early birds? Now, an international team has used artificial intelligence to tackle the problem—creating a free app that readily lets anyone decipher the past.
  • Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    News
    05.12.2025
    Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (Georg-August-University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University). 
  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.