HZB Sets New World Record for CIGS Perovskite Tandem Solar Cells

© G. Farias Basulto / HZB

The tandem cell consists of a combination of CIGS and perovskite and achieves a certified record efficiency of 24.6%.

The tandem cell consists of a combination of CIGS and perovskite and achieves a certified record efficiency of 24.6%. © G. Farias Basulto / HZB

The main components are clearly visible under the scanning electron microscope: granular CIGS crystals on the contact layer, followed by an intermediate layer of aluminium-doped zinc oxide, above which is the extremely thin perovskite layer (black). This is followed by an indium-doped zinc oxide layer and an anti-reflective coating.

The main components are clearly visible under the scanning electron microscope: granular CIGS crystals on the contact layer, followed by an intermediate layer of aluminium-doped zinc oxide, above which is the extremely thin perovskite layer (black). This is followed by an indium-doped zinc oxide layer and an anti-reflective coating. © HZB

Combining two semiconductor thin films into a tandem solar cell can achieve high efficiencies with a minimal environmental footprint. Teams from HZB and Humboldt University Berlin have now presented a CIGS-perovskite tandem cell that sets a new world record with an efficiency of 24.6%, certified by the independent Fraunhofer Institute for Solar Energy Systems.

Thin-film solar cells require little energy and material to produce and therefore have a very small environmental footprint. In addition to the well-known and market-leading silicon solar cells, there are also thin-film solar cells, e.g. based on copper, indium, gallium and selenium, known as CIGS cells. CIGS thin films can even be applied to flexible substrates.

Now, experts from HZB and Humboldt University Berlin, have developed a new tandem solar cell that combines a bottom cell made of CIGS with a top cell based on perovskite. By improving the contact layers between the top and bottom cells, they were able to increase the efficiency to 24.6 %. This is the current world record, as certified by the Fraunhofer Institute for Solar Energy Systems ISE in Freiburg, Germany.

As always, this record cell was the result of a successful team effort: the top cell was fabricated by TU Berlin master's student Thede Mehlhop under the supervision of Stefan Gall. The perovskite absorber layer was produced in the joint laboratory of HZB and Humboldt University of Berlin. The CIGS sub-cell and contact layers were fabricated by HZB researcher Guillermo Farias Basulto. He also used the high-performance cluster system KOALA, which enables the deposition of perovskites and contact layers in vacuum at HZB.

‘At HZB, we have highly specialised laboratories and experts who are top performers in their fields. With this world record tandem cell, they have once again shown how fruitfully they work together,' says Prof. Rutger Schlatmann, spokesman for the Solar Energy Department at HZB.

The record announced today is not the first world record at HZB: HZB teams have already achieved world record values for tandem solar cells several times, most recently for silicon-perovskite tandem solar cells, but also with the combination CIGS-perovskite.

We are confident that CIGS-perovskite tandem cells can achieve much higher efficiencies, probably more than 30%," says Prof. Rutger Schlatmann.

arö

  • Copy link

You might also be interested in

  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.
  • A record year for our living lab for building-integrated PV
    News
    27.01.2026
    A record year for our living lab for building-integrated PV
    In 2025, our solar facade in Berlin-Adlershof generated more electricity than in any of the previous four years of operation.
  • HZB expert appointed chair of the Scientific Advisory Board of the Barcelona Research Centre
    News
    27.01.2026
    HZB expert appointed chair of the Scientific Advisory Board of the Barcelona Research Centre
    Prof. Dr. Susan Schorr has been appointed to the newly established Scientific Advisory Board of the Barcelona Research Centre in Multiscale Science and Engineering and elected as its chair.