HZB-postdoc Feng Liang becomes associate Professor at Xi'an Jiaotong University
Dr. Feng Liang has secured an associate professorship at the Green Hydrogen Innovation Center in the Department of Mechanical Engineering, Xi'an Jiaotong University, China. He will start to build up his research team in June 2025. © HZB
Dr. Feng Liang has joined the HZB Institute Solar Fuels in 2021. Now, he has secured an associate professorship at the Green Hydrogen Innovation Center in the Department of Mechanical Engineering, Xi'an Jiaotong University, China. He will start to build up his research team in June 2025.
Dr. Feng Liang has earned a PhD in mechanical engineering from Xi'an Jiaotong University, China, in a joint training programme with RWTH Aachen. In October 2021, he joined the Institute Solar Fuels on a Helmholtz-Innovation Pool project. He is developing cutting-edge prototypes for water-splitting devices that can operate at higher than ambient pressures up to 8 bar.
The design of functioning prototypes demands skills from different disciplines, not only device engineering but as well a deep understanding of materials science and electrochemistry. “I learned most of the electrochemistry here from Fatwa Abdi and Roel van de Krol”, Liang says. “They were the best mentors I could ever imagine”.
Feng Liang has secured an associate professorship at the Department of Mechanical Engineering in Xi'an Jiaotong University. He will leave HZB after helping his colleagues prepare for the "programme oriented funding" evaluation in May.
“From June 2025, I will start my own group in China, and I'm excited about the prospect of a close partnership with HZB in the future”, he says. Liang will continue his work on prototypes for water splitting. Roel van de Krol, director of the Institute for Solar Fuels, praised Feng Liang's achievement, saying: “It's wonderful to see that his work at HZB has led to an associate professorship; it's a great example of how HZB provides a supportive environment for early-career researchers to develop their careers”.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=29426;sprache=en
- Copy link
-
Bright prospects for tin perovskite solar cells
Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.
-
Synchrotron radiation sources: toolboxes for quantum technologies
Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
-
Joint Kyiv Energy and Climate Lab goes live
Helmholtz-Zentrum Berlin and the National University of Kyiv-Mohyla Academy established on 27 November a Joint Energy and Climate Lab.