Perovskite solar cells: New Young Investigator Group funded by BMBF at HZB

In the COMET-PV project, Dr Artem Musiienko aims to significantly accelerate the development of perovskite solar cells. He is using robotics and AI to analyse the many variations in the material composition of tin-based perovskites. The physicist will set up a Young Investigator Group at HZB.

In the COMET-PV project, Dr Artem Musiienko aims to significantly accelerate the development of perovskite solar cells. He is using robotics and AI to analyse the many variations in the material composition of tin-based perovskites. The physicist will set up a Young Investigator Group at HZB. © M. Setzpfandt / HZB

In the COMET-PV project, Dr Artem Musiienko aims to significantly accelerate the development of perovskite solar cells. He is using robotics and AI to analyse the many variations in the material composition of tin-based perovskites. The physicist will set up a Young Investigator Group at HZB. He will also have an affiliation with Humboldt University in Berlin, where he will gain teaching experience in preparation for a future professorship.

 

Metal halide perovskites are a large class of materials that have been the subject of intense research for several years. Their semiconducting properties make them suitable for high-performance and low-cost solar cells, especially in tandem with solar cells made of silicon or other semiconductor materials. HZB teams have already achieved several world record efficiencies for tandem solar cells. However, competition is fierce, and there are an infinite number of possible variations in the perovskite class of materials. Achieving long-term stability remains a major hurdle, as perovskites are prone to degradation under real-world conditions, including moisture, heat, and light exposure. Additionally, ensuring the sustainability of these materials is crucial, as many high-performance perovskites rely on toxic or scarce elements. Overcoming these challenges requires innovative approaches in material design, interface engineering, and accelerated discovery techniques.

High-throughput measurements

This is where Dr Artem Musiienko's project comes in: his research project, now funded by the BMBF's NanoMatFutur programme, is called COMET-PV. Musiienko will set up a laboratory for optoelectronic high-throughput measurements with robotic support and automatic data evaluation. The research will focus on the class of tin-based perovskites. These materials are significantly behind lead-based perovskites in terms of development. However, the incorporation of tin into the perovskite layer is necessary in the long term due to its potential for higher efficiency, improved sustainability, and potentially greater stability. Tin-based perovskites offer a promising pathway to reducing environmental concerns associated with lead while also enabling novel electronic and optical properties that could enhance performance..

Uo to 100 times faster

‘Our goal is to accelerate materials research by a factor of 100. To achieve this, we are developing a new robotic approach that will also help us to compete for new records. Specifically, we want to reach an efficiency of over 35%,’ says Musiienko. Robotic support allows to analyse a large number of material compositions and measure their properties in a very short time. The data is analysed using artificial intelligence methods.

Partners in industry and research

The project is directly linked to industry and involves industrial partners from the chemical, robotics, instrumentation and solar cell production sectors. In addition, the physicist continues his collaboration with renowned international research institutions in the field of solar energy, including NREL (USA), KAUST (Saudi Arabia), KAUNAS (Lithuania), the University of Oxford (England), Southeast University in China.

 

On the scientist:

Artem Musiienko holds a PhD in Physics from Charles University, Prague, Czech Republic. He was awarded a Marie Skłodowska-Curie Fellowship in 2021 to pursue his research projects at Helmholtz-Zentrum Berlin (HZB), where he focused on advanced characterization techniques, self-assembled monolayers (SAMs), and accelerated photovoltaic material discovery. Recently he was awarded the "Best Innovator Award" by the Marie Curie Alumni Association (MCAA) for his contributions to advanced characterization techniques and photovoltaic material discovery.

On the project:

COMET-PV - ‘Contactless High Throughput Tailoring of Materials and Interfaces Enabling Sustainable Nanoscale Tandem Photovoltaics’

Funding period: 5 years

 

arö

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • 5000th patient treated with protons for eye tumours
    News
    19.08.2025
    5000th patient treated with protons for eye tumours
    For more than 25 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
  • MXene as a frame for 2D water films shows new properties
    Science Highlight
    13.08.2025
    MXene as a frame for 2D water films shows new properties
    An international team led by Dr. Tristan Petit and Prof. Yury Gogotsi has investigated MXene with confined water and ions at BESSY II. In the MXene samples, a transition between localised ice clusters to quasi-two-dimensional water films was identified by increasing temperature. The team also discovered that the intercalated water structure drives a reversible transition from metallic to semiconducting behaviour of the MXene film. This could enable the development of novel devices or sensors based on MXenes.