New material for efficient separation of Deuterium at elevated Temperatures

The crystal structure of Cu-ZIF-gis that shows cylindrical straight channels along the c-axis. The pores were calculated with Connolly surfaces with a probe of 1.1 Å. (Cu, orange; N, blue; C, gray; O, magenta; H, white).

The crystal structure of Cu-ZIF-gis that shows cylindrical straight channels along the c-axis. The pores were calculated with Connolly surfaces with a probe of 1.1 Å. (Cu, orange; N, blue; C, gray; O, magenta; H, white). © Minji Jung / Department of Chemistry, UNIST

A novel porous material capable of separating deuterium (D2) from hydrogen (H2) at a temperature of 120 K has been introduced. Notably, this temperature exceeds the liquefaction point of natural gas, thus facilitating large-scale industrial applications. This advancement presents an attractive pathway for the economical production of D2 by leveraging the existing infrastructure of liquefied natural gas (LNG) production pipelines. The research conducted by Ulsan National Institute of Science & Technology (UNIST), Korea, Helmholtz-Zentrum Berlin, Heinz Maier Leibnitz Zentrum (MLZ), and Soongsil University, Korea, has been published in Nature Communications.

Deuterium, a stable isotope of hydrogen, plays a critical role in enhancing the durability and luminous efficiency of semiconductors and display devices, as well as serving as a fusion fuel in energy production. However, the increasing demand for D2 presents challenges in its production, primarily due to the need to separate from hydrogen through a cryogenic distillation process conducted at temperatures as low as 20 K (-253°C). While research has explored the use of metal-organic frameworks (MOFs) for D2 separation, their efficiency diminishes significantly at elevated temperatures.

In this study, the research team presented a copper-based zeolite imidazolate framework (Cu-ZIF-gis), which shows exceptional D2 separation performance, even at 120 K (-153). While typical MOFs operate effectively at around 23 K (-250), their performance decreases sharply as temperatures approach 77 K (-196). However, the newly developed Cu-based MOF demonstrates a significant advantage in maintaining its effectiveness at higher temperatures.

For the first time, the research team identified that the superior performance of this material results from the increased expansion of its lattice as the temperature rises. At cryogenic temperatures, the pores of the developed MOF are smaller than H2 molecules, thereby inhibiting their passage. However, as the temperature increases, the lattice expands, leading to an increase in pore size. This enlargement facilitates the passage of gases through the pores, thereby enabling the separation of H2 and D2 via the quantum sieving effect, wherein heavier molecules traverse the pores more efficiently at lower temperatures.

Confirmatory in-situ X-ray diffraction (XRD) and quasi-elastic neutron scattering (QENS) experiments, conducted at the Institut Laue-Langevin (ILL) in Grenoble, France, by the joint team from UNIST, HZB and MLZ, confirmed the expansion of the lattice framework with increasing temperature, as well as the difference in isotope diffusivity even at elevated temperatures. Additionally, the analysis from the Thermal Desorption Spectroscopy (TDS) experiments indicated stable D2 separation at elevated temperatures.

Professor Oh remarked, “The reported material exhibits markedly lower energy consumption and enhanced separation efficiency compared to most traditional methods, which operate at extremely low temperatures.” Dr. Jitae Park further noted, “These findings can be applied to develop sustainable isotope separation technologies using existing LNG cryogenic infrastructure, underscoring its potential industrial impact.”

Dr. Margarita Russina highlighted the crucial role of QENS in this study, stating: "With QENS, we can directly probe the molecular motion of H2 and D2 in MOFs, gaining key insights into their diffusion behavior and interactions with porous materials. The observed stronger confinement of D2 compared to H₂, a strictly nanoscale phenomenon, leads to remarkable effects on macroscopic properties, forming the basis for the development of a new generation of materials for more efficient isotope separation."

The research team, jointly led by Professor Hyunchul Oh from the Department of Chemistry at UNIST, Professor Jaheon Kim from Soongsil University, Dr. Jitae Park from Heinz Maier Leibnitz Zentrum (MLZ) at Technical University of Munich (TUM), and Dr. Margarita Russina from Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Berlin, Germany announced this advancement on March 19, 2025. The study also involved Minji Jung, Jaewoo Park, and Raeesh Muhammad from the Department of Chemistry at UNIST, who served as co-first authors. The findings of this research have been published in Nature Communications on February 27, 2025. This study was supported by the National Research Foundation (NRF) of Korea and the Ministry of Science and ICT (MSIT), and the Institut Laue-Langevin (ILL) in Grenoble, France for the allocation of beam time.

UNIST /red.

  • Copy link

You might also be interested in

  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.

  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.
  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.