Georg Forster Research Fellow explores photocatalysts

Dr. Moses Alfred Oladele is working on photocatalysis for CO<sub>2</sub> conversion in a joint project with the group of Dr. Matt Mayer, HZB, and Prof. Andreas Taubert at the University of Potsdam. The chemist comes with a Georg Forster Research Fellowship from the Alexander von Humboldt Foundation.

Dr. Moses Alfred Oladele is working on photocatalysis for CO2 conversion in a joint project with the group of Dr. Matt Mayer, HZB, and Prof. Andreas Taubert at the University of Potsdam. The chemist comes with a Georg Forster Research Fellowship from the Alexander von Humboldt Foundation. © HZB

Dr. Moses Alfred Oladele is working on photocatalysis for CO2 conversion in a joint project with the group of Dr. Matt Mayer, HZB, and Prof. Andreas Taubert at the University of Potsdam. The chemist from Redeemer's University in Ede, Nigeria, came to Berlin in the summer of 2024 with a Georg Forster Research Fellowship from the Alexander von Humboldt Foundation and will work at HZB for two years.

Dr Moses Alfred Oladele studied Industrial Chemistry in Adekunle Ajasin University Akungba-Akoko (BSc), and continued his studies for the Master’s degree in Redeemer’s University in Ede, Osun State, Nigeria, where he also obtained his doctorate in 2021. He has since worked as a lecturer at Redeemer's University and as a scientist at the African Centre for Environmental and Water Research (ACE WATER), developing low-cost materials for environmental remediation of toxic wastes in water and monitoring pollutants in South West Nigeria.

In Matt Mayer's group, he will focus on researching new low-cost catalyst materials that can be activated by sunlight and used to convert CO2 into valuable chemicals with a net zero carbon footprint.

arö

  • Copy link

You might also be interested in

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.
  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.
  • Two precision mechanics from HZB are Berlin's best trainees
    Interview
    30.10.2025
    Two precision mechanics from HZB are Berlin's best trainees
    Two former apprentices from the HZB workshop have achieved something remarkable: Fiete Buchin and Edgar Lunk completed their training as precision mechanics, taking first and second place in all of Berlin. In this interview, they share what it took to reach the top, what makes their training special, and the advice they would give to future apprentices.