BESSY II: Magnetische „Mikroblüten“ verstärken Magnetfelder im Zentrum

Die magnetische Mikrostruktur aus der Nickel-Eisen-Legierung führt zu einer Verdichtung der Feldlinien im Zentrum.

Die magnetische Mikrostruktur aus der Nickel-Eisen-Legierung führt zu einer Verdichtung der Feldlinien im Zentrum. © A. Palau/ICMAB

Zwei Karten des magnetischen Kontrasts. Dabei befindet sich der Kobaltstab im Zentrum der Mikroblüte.

Zwei Karten des magnetischen Kontrasts. Dabei befindet sich der Kobaltstab im Zentrum der Mikroblüte. © S. Valencia /HZB

Eine blütenförmige Struktur aus einer Nickel-Eisen-Legierung, die nur wenige Mikrometer misst, kann Magnetfelder lokal verstärken. Der Effekt lässt sich durch die Geometrie und Anzahl der „Blütenblätter“ steuern. Das magnetische Metamaterial wurde von der Gruppe um Dr. Anna Palau am Institut de Ciencia de Materials de Barcelona (ICMAB) mit Partnern aus dem CHIST-ERA MetaMagIC-Projekts entwickelt und nun an BESSY II in Zusammenarbeit mit Dr. Sergio Valencia untersucht. Die Mikroblüten ermöglichen vielfältige Anwendungen: Sie können die Empfindlichkeit magnetischer Sensoren erhöhen, die Energie für die Erzeugung lokaler Magnetfelder reduzieren, und am PEEM-Messplatz an BESSY II die Messung von Proben unter deutlich höheren Magnetfeldern ermöglichen.

 

Dr. Anna Palau vom Institut de Ciencia de Materials de Barcelona (ICMAB) hat ein spezielles Metamaterial entwickelt, das unter dem Rasterelektronenmikroskop winzigen Blüten ähnelt. Die „Blütenblätter“ bestehen aus Streifen einer ferromagnetischen Nickel-Eisen-Legierung. Die Mikroblüten lassen sich in unterschiedlichen Geometrien herstellen, nicht nur Innen- und Außenradien, sondern auch Anzahl und Breite der Blütenblätter sind variabel. Diese blütenförmige Geometrie bewirkt, dass sich die Feldlinien eines äußeren Magnetfeldes im Zentrum der „Blüte“ konzentrieren, was zu einem lokal deutlich stärkeren Magnetfeld führt.

Magnetische Metamaterialien

„Metamaterialien sind künstlich hergestellte Materialien mit Mikrostrukturen, deren Abmessungen kleiner sind als die elektromagnetischen oder thermischen Wellen, die sie manipulieren sollen“, erklärt Anna Palau. Die Physikerin arbeitet an magnetischen Mikrostrukturen, die in der Datenspeicherung, Informationsverarbeitung, Biomedizin, Katalyse und magnetischen Sensorik eingesetzt werden können. So erhöhen solche Metamaterialien die Empfindlichkeit magnetischer Sensoren, indem sie das zu detektierende Magnetfeld verstärken.

Magnetische Domänen kartiert

Anna Palau, ihr Student Aleix Barrera und Sergio Valencia haben dies nun an der XPEEM-Versuchsstation von BESSY II untersucht. Sie platzierten einen Kobaltstab im Zentrum verschiedener Mikroblüten als Sensor für das Magnetfeld und kartierten die magnetischen Domänen im Inneren des Kobaltstabs. „Durch die Anpassung der geometrischen Parameter wie Form, Größe und Anzahl der Blütenblätter kann das magnetische Verhalten umgeschaltet und gesteuert werden“, sagt Valencia. Dadurch könnte die Empfindlichkeit eines magnetoresistiven Sensors um mehr als zwei Größenordnungen erhöht werden.

Vielfältige Anwendungen, auch für neue XPEEM-Experimente

Diese Innovation eröffnet neue technologische Möglichkeiten, um die Leistung kleiner magnetischer Sensoren zu verbessern und multifunktionale magnetische Komponenten zu entwickeln. In Zukunft können solche Mikrostrukturen dazu verwendet werden, lokal viel höhere Magnetfelder zu erzeugen, was auch für die experimentelle XPEEM-Station bei BESSY II von Interesse ist. Denn das XPEEM ist ein Photoemissionselektronenmikroskop, bei dem die emittierten Elektronen das „Bild“ erzeugen. Magnetfelder lenken diese Elektronen jedoch ab, so dass es schwierig ist, ein stärkeres Magnetfeld anzulegen. „Das maximale Magnetfeld, das wir bisher anwenden können, liegt bei etwa 25 Millitesla (mT). Mit dem Magnetfeldkonzentrator, der das Feld nur lokal verstärkt, können wir problemlos fünfmal größere Felder erreichen. Das ist sehr spannend, weil wir damit magnetische Systeme unter Bedingungen untersuchen können, die bisher nicht möglich waren“, sagt Valencia.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.
  • Bernd Rech in den BR50 Vorstand gewählt
    Nachricht
    30.01.2026
    Bernd Rech in den BR50 Vorstand gewählt
    Der wissenschaftliche Geschäftsführer des Helmholtz-Zentrum Berlin ist das neue Gesicht hinter der Unit „Naturwissenschaften“ beim Berlin Research 50 (BR50). Nach der Wahl im Dezember 2025 fand am 22. Januar 2026 die konstituierende Sitzung des neuen BR50-Vorstands statt.  Mitglieder sind Michael Hintermüller (Weierstrass Institute, WIAS), Noa K. Ha (Deutsches Zentrum für Integrations- und Migrationsforschung, DeZIM), Volker Haucke (Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP), Uta Bielfeldt (Deutsches Rheuma-Forschungszentrum Berlin, DRFZ) und Bernd Rech (HZB).
  • Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Nachricht
    27.01.2026
    Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Unsere Solarfassade in Berlin-Adlershof hat im Jahr 2025 so viel Strom erzeugt wie in keinem der vergangenen vier Betriebsjahre.