Catalysis research with the X-ray microscope at BESSY II

TXM images of Cu<sub>2</sub>O cubes (pink) and metallic copper particles (yellow) at different times: before the reaction (a), after 25 minutes (b), 50 minutes (c) and 75 minutes (d). Simultaneous spectroscopic TXM images were taken to show how the copper compounds change (see publication doi:10.1038/s41563-024-02084-8).

TXM images of Cu2O cubes (pink) and metallic copper particles (yellow) at different times: before the reaction (a), after 25 minutes (b), 50 minutes (c) and 75 minutes (d). Simultaneous spectroscopic TXM images were taken to show how the copper compounds change (see publication doi:10.1038/s41563-024-02084-8). © HZB

Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.

Ammonia (NH3) is a basic component of fertilisers and is critical to agricultural productivity around the world. Until now, ammonia has been synthesised industrially using the Haber-Bosch process, which is energy intensive and produces significant amounts of greenhouse gases that drive climate change. With the development of alternative methods, ammonia could be produced with significantly lower greenhouse gas emissions.

Better catalysts reduce emissions for Ammonia production

There are some promising approaches. For example, a team at the Fritz Haber Institute has been investigating a catalyst based on nanocrystalline copper oxide. During the catalytic reaction, an increasing proportion of these nanocrystals transformed into metallic particles of pure copper. The morphological changes were documented under the transmission electron microscope (TEM), but to gain insights into the chemical processes during the reaction, the FHI team collaborated with the group of Prof. Gerd Schneider at HZB.

Unique insights at the TXM

The transmission X-ray microscope (TXM) is the only one of its kind in the world for catalysis research, as catalysts can be examined in both the TEM and the TXM in the same specimen holder to obtain complementary information on catalysis. As an operando microscope, the TXM enables spectroscopic data to be obtained at the nanoscale, allowing chemical processes and reactions to be analysed.

'We were able to show that both copper dioxide and metallic copper particles exist for long periods of time and are kinetically stabilised by certain surface hydroxide groups,' says HZB physicist Dr. Christoph Pratsch from Schneider's team, who carried out the TXM investigations.

Crucial interactions examined

The composition of this mixture and the form of the resulting catalysts depend strongly on the applied electrical potential, the chemical environment and the duration of the reaction. The interaction between the electrolyte and the catalyst is crucial for the yield of ammonia and thus for the efficiency of the desired reaction.

Two new X-ray microscopes for future experiments


The X-ray microscopy team is currently developing two new microscopes. A new TXM will allow routine spectromicroscopic investigations from the soft to the hard X-ray range, including the use of phase rotations of the X-ray waves in the object. 'We will be able to distinguish between processes inside and on the surface of catalysts by measuring the electron emission,' explains Gerd Schneider. In addition, the distribution of elements in nanoscale catalysts can be measured using X-ray fluorescence. The new microscopes can already be used at BESSY II. However, their full potential will be unleashed at the successor facility BESSY III, which is scheduled to go into operation in 2035. The two new instruments will then provide even deeper insights into catalytic processes.

arö

  • Copy link

You might also be interested in

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.
  • Energy of charge carrier pairs in cuprate compounds
    Science Highlight
    05.11.2025
    Energy of charge carrier pairs in cuprate compounds
    High-temperature superconductivity is still not fully understood. Now, an international research team at BESSY II has measured the energy of charge carrier pairs in undoped La₂CuO₄. Their findings revealed that the interaction energies within the potentially superconducting copper oxide layers are significantly lower than those in the insulating lanthanum oxide layers. These results contribute to a better understanding of high-temperature superconductivity and could also be relevant for research into other functional materials.
  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.