Catalysis research with the X-ray microscope at BESSY II

TXM images of Cu<sub>2</sub>O cubes (pink) and metallic copper particles (yellow) at different times: before the reaction (a), after 25 minutes (b), 50 minutes (c) and 75 minutes (d). Simultaneous spectroscopic TXM images were taken to show how the copper compounds change (see publication doi:10.1038/s41563-024-02084-8).

TXM images of Cu2O cubes (pink) and metallic copper particles (yellow) at different times: before the reaction (a), after 25 minutes (b), 50 minutes (c) and 75 minutes (d). Simultaneous spectroscopic TXM images were taken to show how the copper compounds change (see publication doi:10.1038/s41563-024-02084-8). © HZB

Contrary to what we learned at school, some catalysts do change during the reaction: for example, certain electrocatalysts can change their structure and composition during the reaction when an electric field is applied. The X-ray microscope TXM at BESSY II in Berlin is a unique tool for studying such changes in detail. The results help to develop innovative catalysts for a wide range of applications. One example was recently published in Nature Materials. It involved the synthesis of ammonia from waste nitrates.

Ammonia (NH3) is a basic component of fertilisers and is critical to agricultural productivity around the world. Until now, ammonia has been synthesised industrially using the Haber-Bosch process, which is energy intensive and produces significant amounts of greenhouse gases that drive climate change. With the development of alternative methods, ammonia could be produced with significantly lower greenhouse gas emissions.

Better catalysts reduce emissions for Ammonia production

There are some promising approaches. For example, a team at the Fritz Haber Institute has been investigating a catalyst based on nanocrystalline copper oxide. During the catalytic reaction, an increasing proportion of these nanocrystals transformed into metallic particles of pure copper. The morphological changes were documented under the transmission electron microscope (TEM), but to gain insights into the chemical processes during the reaction, the FHI team collaborated with the group of Prof. Gerd Schneider at HZB.

Unique insights at the TXM

The transmission X-ray microscope (TXM) is the only one of its kind in the world for catalysis research, as catalysts can be examined in both the TEM and the TXM in the same specimen holder to obtain complementary information on catalysis. As an operando microscope, the TXM enables spectroscopic data to be obtained at the nanoscale, allowing chemical processes and reactions to be analysed.

'We were able to show that both copper dioxide and metallic copper particles exist for long periods of time and are kinetically stabilised by certain surface hydroxide groups,' says HZB physicist Dr. Christoph Pratsch from Schneider's team, who carried out the TXM investigations.

Crucial interactions examined

The composition of this mixture and the form of the resulting catalysts depend strongly on the applied electrical potential, the chemical environment and the duration of the reaction. The interaction between the electrolyte and the catalyst is crucial for the yield of ammonia and thus for the efficiency of the desired reaction.

Two new X-ray microscopes for future experiments


The X-ray microscopy team is currently developing two new microscopes. A new TXM will allow routine spectromicroscopic investigations from the soft to the hard X-ray range, including the use of phase rotations of the X-ray waves in the object. 'We will be able to distinguish between processes inside and on the surface of catalysts by measuring the electron emission,' explains Gerd Schneider. In addition, the distribution of elements in nanoscale catalysts can be measured using X-ray fluorescence. The new microscopes can already be used at BESSY II. However, their full potential will be unleashed at the successor facility BESSY III, which is scheduled to go into operation in 2035. The two new instruments will then provide even deeper insights into catalytic processes.

arö

  • Copy link

You might also be interested in

  • Green fabrication of hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Green fabrication of hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
  • BESSY II: Insight into ultrafast spin processes with femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Insight into ultrafast spin processes with femtoslicing
    An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.