Optical innovations for solar modules - which are the most promising?

Symbolic picture with Microsoft Copilot.

Symbolic picture with Microsoft Copilot.

In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.

Photovoltaics (PV) has become one of the most cost-effective technologies for generating electricity. In November 2024, the world’s photovoltaic systems reached an installed capacity of two terawatts, and the growth rates and cost reductions are still enormous.

Expertise from 22 research institutions

‘At a recent workshop, we discussed how the optics community can contribute to the further growth of photovoltaics,’ says Prof. Christiane Becker, head of the Solar Energy Optics Department at HZB. Christiane Becker and her colleague Dr. Klaus Jäger then invited international experts to compile a comprehensive overview of PV technologies and optical innovations. In total, 27 renowned experts from 22 research institutions in 9 countries contributed to the review.

Most promising concepts

The article begins with an overview of the current state of photovoltaics on a terawatt scale. From this, the experts identify issues and topics, where the optics community can contribute  to enable large-scale deployment. ‘We have also identified a number of optical concepts that are currently only on the threshold of economic viability, but which hold the most promise for advancing PV technology,’ says Christiane Becker. These include optical innovations in the field of multi-junction solar cells, which have the highest efficiencies and therefore have great potential to further reduce the levelized cost of electricity.

Ecological aspects

Improved manufacturing processes using an eco-design approach and minimising the consumption of critical raw materials are also discussed. Another chapter is devoted to coloured solar modules as building integrated PV solutions. ‘Especially in cities, we need to use facades and other surfaces too for solar energy conversion, and of course, it does matter how the PV modules look. Such innovative solar modules allow sophisticated aesthetic solutions,’ says Becker. 

Christiane Becker and Klaus Jäger are convinced that this comprehensive review does not only help the scientific community, but also decision makers in research funding.

arö

  • Copy link

You might also be interested in

  • Compact electron accelerator for treating PFAS-contaminated water
    Science Highlight
    19.01.2026
    Compact electron accelerator for treating PFAS-contaminated water
    So-called forever chemicals or PFAS compounds are a growing environmental problem. An innovative approach to treating PFAS-contaminated water and soil now comes from accelerator physics: high-energy electrons can break down PFAS molecules into harmless components through a process called radiolysis. A recent study published in PLOS One shows that an accelerator developed at HZB, based on a SRF photoinjector, can provide the necessary electron beam.
  • The BIPV living lab at the centre of an international comparative study
    News
    14.01.2026
    The BIPV living lab at the centre of an international comparative study
    The BIPV living lab at HZB in Berlin-Adlershof is at the centre of an international comparative study for the simulation of coloured solar façades.
  • The twisted nanotubes that tell a story
    News
    09.12.2025
    The twisted nanotubes that tell a story
    In collaboration with scientists in Germany, EPFL researchers have demonstrated that the spiral geometry of tiny, twisted magnetic tubes can be leveraged to transmit data based on quasiparticles called magnons, rather than electrons.