Optische Innovationen für Solarmodule – Was bringt den Ausbau am meisten voran?

Symbolbild mit Microsoft Copilot.

Symbolbild mit Microsoft Copilot.

Im Jahr 2023 erzeugten Photovoltaikanlagen weltweit mehr als 5% der elektrischen Energie und die installierte Leistung verdoppelt sich alle zwei bis drei Jahre. Optische Technologien können die Effizienz von Solarmodulen weiter steigern und neue Einsatzbereiche erschließen, etwa in Form von ästhetisch ansprechenden, farbigen Solarmodulen für Fassaden. Nun geben 27 Fachleute einen umfassenden Überblick über den Stand der Forschung und eine Einschätzung, welche Innovationen besonders zielführend sind. Der Bericht, der auch für Entscheidungsträger*innen in der Forschungsförderung interessant ist, wurde von Prof. Christiane Becker und Dr. Klaus Jäger aus dem HZB koordiniert.

Photovoltaik (PV) ist inzwischen eine der preisgünstigsten Technologien, um Strom zu produzieren. Photovoltaikanlagen erreichten im November 2024 weltweit eine installierte Kapazität von zwei Terawatt und die Wachstumsraten und Kostensenkungen sind noch immer enorm.

Gesammelte Expertise aus neun Ländern

„Wir haben auf einer Fachtagung intensiv diskutiert, wie die Optik-Gemeinschaft zum weiteren Wachstum der Photovoltaik beitragen kann“, sagt Prof. Christiane Becker, die am HZB die Abteilung Solarenergieoptik leitet. Im Anschluss haben Christiane Becker und ihr Kollege Dr. Klaus Jäger internationale Fachleute dazu eingeladen, gemeinsam einen umfassenden Überblick über PV-Technologien und optische Innovationen zu verfassen. Insgesamt haben sich 27 bekannte Expert*innen aus 22 Forschungseinrichtungen in neun Ländern an diesem Überblick beteiligt.

Innovationen mit Praxispotenzial

Der Beitrag beginnt mit einem Überblick über den aktuellen Stand der Photovoltaik im Terawatt-Maßstab. Daraus leiten die Fachleute die Themen ab, zu denen die Optik-Community beitragen kann, um eine großtechnische Nutzung zu ermöglichen. „Wir haben auch einige optische Konzepte identifiziert, die aktuell erst an der Schwelle der Wirtschaftlichkeit stehen, aber sehr gute Aussichten haben, die PV-Technologie weiter voranzutreiben“, sagt Christiane Becker. Dazu zählen optische Innovationen im Bereich von Mehrfachsolarzellen, die höchste Wirkungsgrade aufweisen und somit großes Potenzial haben, den Strompreis weiter zu senken.

Ökologische Aspekte

Aber auch verbesserte Herstellungsverfahren unter der Berücksichtigung ökologischer Aspekte und die Minimierung des Verbrauchs von kritischen Rohstoffen werden erörtert. Ein weiteres Kapitel ist farbigen Solarmodulen gewidmet. „Gerade in Städten müssen wir auch Fassaden und andere Flächen zur Energiegewinnung nutzen, und da spielt es schon eine Rolle, wie das aussieht. Solche innovativen Solarmodule ermöglichen eine anspruchsvolle ästhetische Gestaltung“, sagt Becker.

Christiane Becker und Klaus Jäger sind überzeugt, dass dieser Überblicksbeitrag auch als Entscheidungshilfe für die Forschungsförderung nützlich sein kann.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Nachricht
    28.11.2025
    Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Das Helmholtz-Zentrum Berlin und die Nationale Universität Kyjiw-Mohyla-Akademie haben am 27. November ein gemeinsames Energie- und Klimalabor gegründet.
  • Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Science Highlight
    25.11.2025
    Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Ein Forschungsteam vom Helmholtz Zentrum Berlin (HZB) und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) hat herausgefunden, wie Karbonatmoleküle die Umwandlung von CO2 in nützliche Kraftstoffe durch Gold-Elektrokatalysatoren beeinflussen. Ihre Studie beleuchtet, welche molekularen Mechanismen bei der CO2-Elektrokatalyse und der Wasserstoffentwicklung eine Rolle spielen und zeigt Strategien zur Verbesserung der Energieeffizienz und der Selektivität der katalytischen Reaktion auf.
  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.