Accelerator Physics: First electron beam in SEALab
The small spot on the screen is the electron beam. The large cloud to its left is caused by the reflection of the laser beam from the photocathode. © SEALab/HZB
The SEALab team has achieved this breakthrough after years of work. Here you can see the commissioning team. © SEALab/HZB
The SEALab team at HZB has achieved a world first by generating an electron beam from a multi-alkali (Na-K-Sb) photocathode and accelerating it to relativistic energies in a superconducting radiofrequency accelerator (SRF photoinjector). This is a real breakthrough and opens up new options for accelerator physics.
This success paves the way for the further development of superconducting radio-frequency accelerators (SRF photoinjectors) for high-brilliancy electron sources. The achievement holds significant potential for applications in free-electron lasers, energy recovery linac (ERL) class accelerators, detector development and ultrafast electron scattering experiments (UED).
Years of dedicated work, first in the bERLinPro project and then in the SEALAB team, have been invested to achieve this success. There were numerous challenges along the way, including delays due to the COVID-19 pandemic and the cyber attack. Despite this, the team has made great progress. The successful test generated an average current in the microampere range at a repetition rate of 1 MHz, demonstrating the viability of the sodium-based photocathode in combination with SRF acceleration.
Axel Neumann, SEALab project manager, emphasises: ‘This great success is the result of many dedicated individuals who contributed to bERLinPro and SEALab over the past years, often under high levels of stress. We also thank all former team members who were involved in the original project.’
Thorsten Kamps, deputy project manager, now sees the fruits of the intensive work for the photoinjector: ‘We have completely revamped the preparation and characterisation of photocathodes in recent years and are now seeing the success. This will have a significant impact on similar projects.’
With this successful test, the SEALab team has demonstrated that it is possible to use a robust multi-alkali photoemissive source to accelerate an electron beam in an SRF photoinjector to relativistic energies and at a high repetition rate. These results could help to further improve the performance of the next generation of electron injectors. The SEALab team will now also investigate the different beam parameters to expand the possibilities of SRF photoinjectors.
red.
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=29826;sprache=en
- Copy link
-
Long-term stability for perovskite solar cells: a big step forward
Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.
-
Energy of charge carrier pairs in cuprate compounds
High-temperature superconductivity is still not fully understood. Now, an international research team at BESSY II has measured the energy of charge carrier pairs in undoped La₂CuO₄. Their findings revealed that the interaction energies within the potentially superconducting copper oxide layers are significantly lower than those in the insulating lanthanum oxide layers. These results contribute to a better understanding of high-temperature superconductivity and could also be relevant for research into other functional materials.
-
Electrocatalysis with dual functionality – an overview
Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.