Accelerator Physics: First electron beam in SEALab

The small spot on the screen is the electron beam. The large cloud to its left is caused by the reflection of the laser beam from the photocathode.

The small spot on the screen is the electron beam. The large cloud to its left is caused by the reflection of the laser beam from the photocathode. © SEALab/HZB

The SEALab team has achieved this breakthrough after years of work. Here you can see the commissioning team.

The SEALab team has achieved this breakthrough after years of work. Here you can see the commissioning team. © SEALab/HZB

The SEALab team at HZB has achieved a world first by generating an electron beam from a multi-alkali (Na-K-Sb) photocathode and accelerating it to relativistic energies in a superconducting radiofrequency accelerator (SRF photoinjector). This is a real breakthrough and opens up new options for accelerator physics.

This success paves the way for the further development of superconducting radio-frequency accelerators (SRF photoinjectors) for high-brilliancy electron sources. The achievement holds significant potential for applications in free-electron lasers, energy recovery linac (ERL) class accelerators, detector development and ultrafast electron scattering experiments (UED).

Years of dedicated work, first in the bERLinPro project and then in the SEALAB team, have been invested to achieve this success. There were numerous challenges along the way, including delays due to the COVID-19 pandemic and the cyber attack. Despite this, the team has made great progress. The successful test generated an average current in the microampere range at a repetition rate of 1 MHz, demonstrating the viability of the sodium-based photocathode in combination with SRF acceleration.

Axel Neumann, SEALab project manager, emphasises: ‘This great success is the result of many dedicated individuals who contributed to bERLinPro and SEALab over the past years, often under high levels of stress. We also thank all former team members who were involved in the original project.’

Thorsten Kamps, deputy project manager, now sees the fruits of the intensive work for the photoinjector: ‘We have completely revamped the preparation and characterisation of photocathodes in recent years and are now seeing the success. This will have a significant impact on similar projects.’

With this successful test, the SEALab team has demonstrated that it is possible to use a robust multi-alkali photoemissive source to accelerate an electron beam in an SRF photoinjector to relativistic energies and at a high repetition rate. These results could help to further improve the performance of the next generation of electron injectors. The SEALab team will now also investigate the different beam parameters to expand the possibilities of SRF photoinjectors.

red.

  • Copy link

You might also be interested in

  • A record year for our living lab for BIPV
    News
    22.01.2026
    A record year for our living lab for BIPV
    In 2025, our solar facade in Berlin-Adlershof generated more electricity than in any of the previous four years of operation.
  • Compact electron accelerator for treating PFAS-contaminated water
    Science Highlight
    19.01.2026
    Compact electron accelerator for treating PFAS-contaminated water
    So-called forever chemicals or PFAS compounds are a growing environmental problem. An innovative approach to treating PFAS-contaminated water and soil now comes from accelerator physics: high-energy electrons can break down PFAS molecules into harmless components through a process called radiolysis. A recent study published in PLOS One shows that an accelerator developed at HZB, based on a SRF photoinjector, can provide the necessary electron beam.
  • The twisted nanotubes that tell a story
    News
    09.12.2025
    The twisted nanotubes that tell a story
    In collaboration with scientists in Germany, EPFL researchers have demonstrated that the spiral geometry of tiny, twisted magnetic tubes can be leveraged to transmit data based on quasiparticles called magnons, rather than electrons.