Solar cells on moon glass for a future base on the moon

Components of a Moon solar cell.

Components of a Moon solar cell. © Felix Lang.

Future settlements on the moon will need energy, which could be supplied by photovoltaics. However, launching material into space is expensive – transporting one kilogram to the moon costs one million euros. But there are also resources on the moon that can be used. A research team led by Dr. Felix Lang of the University of Potsdam and Dr. Stefan Linke of the Technical University of Berlin have now produced the required glass from ‘moon dust’ (regolith) and coated it with perovskite. This could save up to 99 percent of the weight needed to produce PV modules on the moon. The team tested the radiation tolerance of the solar cells at the proton accelerator of the HZB.

“The highlight of our study is that we can extract the glass we need for our solar cells directly from the lunar regolith without any processing,” says project leader Felix Lang, who leads a junior research group at the Institute of Physics and Astronomy, funded by a Freigeist-Fellowship of the VolkswagenStiftung.

The solar cells tested by the researchers have a layered structure, with the substrate and cover layer consisting of Moon glass and the intermediate layer of perovskite. “These solar cells require ultrathin absorber layers of 500 to 800 nanometers only, allowing the fabrication of 400 square meter solar cells with just one kilogram of perovskite raw material brought from Earth,” Lang summarizes.

Lang emphasizes the amazing stability of the solar cells produced against solar and cosmic radiation – an essential prerequisite for a stable energy supply on the moon. The radiation tolerance was tested at the Proton accelerator at HZB in the team of Prof. Andrea Denker.

Read the full text at the website of University of Potsdam:

https://www.uni-potsdam.de/en/headlines-and-featured-stories/detail/2025-04-03-solarzellen-auf-mondglas-photovoltaik-koennte-die-energie-fuer-eine-zukuenftige-basis-au

red./Uni Potsdam

  • Copy link

You might also be interested in

  • Joint Kyiv Energy and Climate Lab goes live
    News
    28.11.2025
    Joint Kyiv Energy and Climate Lab goes live
    Helmholtz-Zentrum Berlin and the National University of Kyiv-Mohyla Academy established on 27 November a Joint Energy and Climate Lab.
  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.

  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.