Solar cells on moon glass for a future base on the moon

Components of a Moon solar cell.

Components of a Moon solar cell. © Felix Lang.

Future settlements on the moon will need energy, which could be supplied by photovoltaics. However, launching material into space is expensive – transporting one kilogram to the moon costs one million euros. But there are also resources on the moon that can be used. A research team led by Dr. Felix Lang of the University of Potsdam and Dr. Stefan Linke of the Technical University of Berlin have now produced the required glass from ‘moon dust’ (regolith) and coated it with perovskite. This could save up to 99 percent of the weight needed to produce PV modules on the moon. The team tested the radiation tolerance of the solar cells at the proton accelerator of the HZB.

“The highlight of our study is that we can extract the glass we need for our solar cells directly from the lunar regolith without any processing,” says project leader Felix Lang, who leads a junior research group at the Institute of Physics and Astronomy, funded by a Freigeist-Fellowship of the VolkswagenStiftung.

The solar cells tested by the researchers have a layered structure, with the substrate and cover layer consisting of Moon glass and the intermediate layer of perovskite. “These solar cells require ultrathin absorber layers of 500 to 800 nanometers only, allowing the fabrication of 400 square meter solar cells with just one kilogram of perovskite raw material brought from Earth,” Lang summarizes.

Lang emphasizes the amazing stability of the solar cells produced against solar and cosmic radiation – an essential prerequisite for a stable energy supply on the moon. The radiation tolerance was tested at the Proton accelerator at HZB in the team of Prof. Andrea Denker.

Read the full text at the website of University of Potsdam:

https://www.uni-potsdam.de/en/headlines-and-featured-stories/detail/2025-04-03-solarzellen-auf-mondglas-photovoltaik-koennte-die-energie-fuer-eine-zukuenftige-basis-au

red./Uni Potsdam

  • Copy link

You might also be interested in

  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.
  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!
  • BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties in phosphorus. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.