Solar cells on moon glass for a future base on the moon

Components of a Moon solar cell.

Components of a Moon solar cell. © Felix Lang.

Future settlements on the moon will need energy, which could be supplied by photovoltaics. However, launching material into space is expensive – transporting one kilogram to the moon costs one million euros. But there are also resources on the moon that can be used. A research team led by Dr. Felix Lang of the University of Potsdam and Dr. Stefan Linke of the Technical University of Berlin have now produced the required glass from ‘moon dust’ (regolith) and coated it with perovskite. This could save up to 99 percent of the weight needed to produce PV modules on the moon. The team tested the radiation tolerance of the solar cells at the proton accelerator of the HZB.

“The highlight of our study is that we can extract the glass we need for our solar cells directly from the lunar regolith without any processing,” says project leader Felix Lang, who leads a junior research group at the Institute of Physics and Astronomy, funded by a Freigeist-Fellowship of the VolkswagenStiftung.

The solar cells tested by the researchers have a layered structure, with the substrate and cover layer consisting of Moon glass and the intermediate layer of perovskite. “These solar cells require ultrathin absorber layers of 500 to 800 nanometers only, allowing the fabrication of 400 square meter solar cells with just one kilogram of perovskite raw material brought from Earth,” Lang summarizes.

Lang emphasizes the amazing stability of the solar cells produced against solar and cosmic radiation – an essential prerequisite for a stable energy supply on the moon. The radiation tolerance was tested at the Proton accelerator at HZB in the team of Prof. Andrea Denker.

Read the full text at the website of University of Potsdam:

https://www.uni-potsdam.de/en/headlines-and-featured-stories/detail/2025-04-03-solarzellen-auf-mondglas-photovoltaik-koennte-die-energie-fuer-eine-zukuenftige-basis-au

red./Uni Potsdam

  • Copy link

You might also be interested in

  • Tage des offenen Reallabors - Das HZB lädt ein!
    Nachricht
    11.06.2025
    Tage des offenen Reallabors - Das HZB lädt ein!
    Photovoltaik trifft Architektur.
  • AI in Chemistry: Study Highlights Strengths and Weaknesses
    News
    04.06.2025
    AI in Chemistry: Study Highlights Strengths and Weaknesses
    How well does artificial intelligence perform compared to human experts? A research team at HIPOLE Jena set out to answer this question in the field of chemistry. Using a newly developed evaluation method called “ChemBench,” the researchers compared the performance of modern language models such as GPT-4 with that of experienced chemists. 

  • TH Wildau and Helmholtz Zentrum Berlin signed comprehensive cooperation
    News
    30.05.2025
    TH Wildau and Helmholtz Zentrum Berlin signed comprehensive cooperation
    On 21 May 2025, the Technical University of Applied Sciences Wildau (TH Wildau) and the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), signed a comprehensive cooperation agreement. The aim is to further promote networking and cooperation, particularly in basic research, to increase the scientific excellence of both partners and to develop competence networks in research, teaching and the training of young scientists.