Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung

<p class="x_MsoNormal">Der gr&uuml;ne Laser regt in den NV-Zentren Ladungstr&auml;ger an, die von Oberfl&auml;chenzust&auml;nden eingefangen werden. Die Abtastspitze f&auml;hrt &uuml;ber die Oberfl&auml;che und misst in der Umgebung eines NV-Zentrums die Potenzialdifferenz. Mit Mikrowellen lassen sich die Spinzust&auml;nde der NV-Zentren manipulieren.

Der grüne Laser regt in den NV-Zentren Ladungsträger an, die von Oberflächenzuständen eingefangen werden. Die Abtastspitze fährt über die Oberfläche und misst in der Umgebung eines NV-Zentrums die Potenzialdifferenz. Mit Mikrowellen lassen sich die Spinzustände der NV-Zentren manipulieren. © Martin Künsting / HZB

Diamanten mit spezifischen Defekten können als hochempfindliche Sensoren oder Qubits für Quantencomputer genutzt werden. Die Quanteninformation wird dabei im Elektronenspin-Zustand der Defekte gespeichert. Allerdings müssen die Spin-Zustände bislang optisch ausgelesen werden, was extrem aufwändig ist. Nun hat ein Team am HZB eine elegantere Methode entwickelt, um die Quanteninformation über eine Photospannung auszulesen. Dies könnte ein deutlich kompakteres Design von Quantensensoren ermöglichen.

Defekte in Festkörpern sind zwar manchmal unerwünscht, können aber auch für wunderbare, neue Talente sorgen, zum Beispiel bei Diamanten: Werden so genannte Stickstoff-Vakanz-Zentren (NV-Zentren) eingebracht, dann lässt sich deren Spinzustand mit Mikrowellen manipulieren; die Information zu einzelnen Spinzuständen kann über Licht ausgelesen werden kann. Damit kommen solche NV-dotierten Diamanten als hochempfindliche Sensoren in Frage, aber auch als Qubits für Quantencomputer.

Bisher: Messung von wenigen Photonen

Um den jeweiligen Zustand des Spins zu ermitteln, müssen jedoch bisher die emittierten Photonen gemessen werden. Da beim Umklappen einzelner Spins nur einzelne Photonen entstehen, ist dieses Signal sehr schwach. Die notwendige Verstärkung ist aufwändig und macht das Design sehr komplex.

Nun: Messung über die Photospannung

Ein Team am HZB hat nun eine neue Methode vorgestellt, um dieses Problem zu lösen. „Die Idee war, dass solche Defektzentren nicht nur einen Spinzustand besitzen, sondern auch über elektrische Ladungen verfügen“, sagt Dr. Boris Naydenov.  Die Physiker nutzten daher eine Variante der Rasterkraftmikroskopie, die Kelvin-Probe-Force-Mikroskopie (KPFM): Dabei regt ein Laser die NV-Zentren an, erzeugt dort freie Ladungsträger, die von Oberflächenzuständen eingefangen werden und rund um ein NV-Zentrum eine messbare Spannung erzeugen.

Auslesung von Einzelspins

„Die so erzeugte Photospannung hängt vom Elektronenspin-Zustand des NV-Zentrums ab, und dadurch können wir tatsächlich den Einzelspin auslesen“, sagt Sergei Trofimov, der die Messungen im Rahmen seiner Promotion durchgeführt hat. Die neue Methode ermöglicht es sogar, die Spindynamik zu erfassen, indem über eine Mikrowellenanregung die Spinzustände manipuliert werden.

Kompakte Bauelemente

„Dies wäre ein Weg, um wirklich winzige und kompakte Bauelemente auf Basis von Diamant zu entwickeln, da jetzt nur noch geeignete Kontakte benötigt werden, anstelle von aufwändigen Mikroskopoptiken und Einzelphotonendetektoren“, sagt Prof. Klaus Lips, Leiter der Abteilung Spins in der Energieumwandlung und Quanteninformatik. „Die neu entwickelte Auslesemethode könnte auch in anderen Festkörperphysiksystemen eingesetzt werden, bei denen die Elektronenspinresonanz von Spindefekten beobachtet wurde“, schätzt Lips.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.
  • Perowskit-Solarzellen aus Deutschland machen Chinas PV-Technik Konkurrenz - Technologietransfer-Preis des HZB 2025
    Nachricht
    15.10.2025
    Perowskit-Solarzellen aus Deutschland machen Chinas PV-Technik Konkurrenz - Technologietransfer-Preis des HZB 2025
    Photovoltaik ist die führende Technologie bei der Umstellung auf saubere Energie. Doch die traditionelle Solartechnologie auf Siliziumbasis hat ihre Effizienzgrenze erreicht. Daher hat ein HZB-Team eine auf Perowskit basierende Mehrfachzellenarchitektur entwickelt. Dafür erhielten Kevin J. Prince und Siddhartha Garud am 13. Oktober 2025 den mit 5.000 Euro dotierten Technologie-Transferpreis des Helmholtz-Zentrum Berlin (HZB).
  • Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Nachricht
    08.10.2025
    Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Sasol Research & Technology und das Helmholtz-Zentrum Berlin (HZB) erweitern ihre Partnerschaft auf den Bereich der Digitalisierung. Dabei bauen sie auf gemeinsamen Anstrengungen im Rahmen des CARE-O-SENE-Projekts und einer Anfang 2025 ins Leben gerufenen Industrial Fellowship auf. Die neue Initiative ist ein Schritt vorwärts bei der Nutzung digitaler Technologien, um Innovation bei Katalysatoren zu beschleunigen und die  wissenschaftliche Zusammenarbeit zu vertiefen.