New instrument at BESSY II: The OÆSE endstation in EMIL

The new end station was set up in the EMIL laboratory.

The new end station was set up in the EMIL laboratory. © R. Garcia-Diez /HZB

Scheme of the endstation, including the sample environment, the analysis chamber and the operando beamline section.

Scheme of the endstation, including the sample environment, the analysis chamber and the operando beamline section. © HZB

A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.

Solar cells, catalysts, and batteries are composed of so-called energy materials, i.e., materials that either convert or store energy. Their functionality is based on complex chemical or physical processes. In order to improve their functionality, it is crucially required to understand those processes, ideally while they are taking place, i.e. by in situ and operando studies. A new experimental station enabling corresponding experiments is now available at the Energy Materials In-situ Laboratory Berlin (EMIL) located at the synchrotron facility BESSY II.

The “Operando Absorption and Emission Spectroscopy on EMIL” (OÆSE) provides detailed insights into the electronic and chemical structures of materials and interfaces and their changes during critical (electro)chemical processes via X-ray absorption (XAS) and emission (XES) spectroscopy .

At the heart of the OÆSE endstation is a modular and flexible in situ/operando sample environment, specially tailored to tackle the specific research questions required for each energy material, which design ensures easy adaptation to different experiments.

To demonstrate the capabilities of the OÆSE endstation, the team led by Raul Garcia-Diez and Marcus Bär studied in situ the electrochemical deposition of copper from an aqueous CuSO4 electrolyte using combined soft and hard X-ray absorption spectroscopy exploiting the two-color beamline of EMIL. The case study shows that the new endstation offers valuable insights into dynamic electrochemical processes and thus enables a better understanding of complex electrochemical systems.

arö

  • Copy link

You might also be interested in

  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • Joint Kyiv Energy and Climate Lab goes live
    News
    28.11.2025
    Joint Kyiv Energy and Climate Lab goes live
    Helmholtz-Zentrum Berlin and the National University of Kyiv-Mohyla Academy established on 27 November a Joint Energy and Climate Lab.