Perowskit-Forschung: Hybridmaterialien als hochempfindliche Röntgendetektoren

Das polykristalline Pulver wurde zu einem dichten Pellet mit einem Durchmesser von 10 mm gepresst.

Das polykristalline Pulver wurde zu einem dichten Pellet mit einem Durchmesser von 10 mm gepresst. © HZB

Das Pulver wird mit Kugeln fein gemahlen und dann zu einem kompakten Pellet gepresst, das als Detektor eingesetzt werden kann.

Das Pulver wird mit Kugeln fein gemahlen und dann zu einem kompakten Pellet gepresst, das als Detektor eingesetzt werden kann. © BAM/HZB

Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

Die Röntgenbildgebung ist in der medizinischen Diagnostik und Materialforschung unverzichtbar. Um ein Bild zu erzeugen, wandelt ein Detektor die Röntgenstrahlen, die das Objekt durchdrungen haben, von einem Detektor in elektrische Signale um. Je empfindlicher diese Detektoren reagieren, desto niedriger kann die Strahlenbelastung für die Probe ausfallen. Insbesondere in medizinischen Anwendungen wäre dies sehr günstig.

Inspiriert von Perowskit-Materialien

Einem Team um die Röntgendetektor-Expertin Prof. Olena Maslyanchuk am HZB ist es nun gelungen, die Eignung von zwei neuen Materialien als hocheffiziente Röntgendetektoren nachzuweisen. Es handelt sich dabei um organisch-anorganische Hybridmaterialien, inspiriert von den Halid-Perowskiten, die für optoelektronische Anwendungen interessant sind,  [(CH3CH2)3S]6Bi8I30 und [(CH3CH2)3S]AgBiI5, beide mit dem Element Wismut. Sie wurden zuerst von Dr. Allan Starkholm für seine Promotion am Royal Institute of Technology, Stockholm, untersucht, der jetzt als Postdoc am HZB forscht.

Ideale Eigenschaften für Röntgendetektion

„Sie sind ideal für die Röntgendetektion“, sagt Starkholm und begründet dies mit den hohen Ordnungszahlen, geeigneten Bandlücken und einzigartigen strukturellen Eigenschaften: „Sie enthalten stabile Sulfoniumkationen, die eine bessere Langlebigkeit im Einsatz versprechen, anstelle der traditionell verwendeten hygroskopischen Ammoniumkationen.“

Umweltfreundliche Herstellung

In Zusammenarbeit mit der BAM-Expertin Dr. Franziska Emmerling wurde anschließend ein besonders umweltfreundliches Herstellungsverfahren genutzt, das ohne Lösungsmittel auskommt: das Kugelmahlen. Dabei entstehen polykristalline Pulver, die zu dichten Pellets gepresst werden. Diese Verfahren sind auch in der Industrie etabliert.

Bis zu 50mal empfindlicher

Getestet wurden die Pellets als so genannte Flachdetektoren für Röntgenstrahlung in der Gruppe von Dr. Felix Lang an der Universität Potsdam. „Die Ergebnisse zeigen, dass sie selbst über lange Zeiträume besser funktionieren als derzeit handelsübliche Detektoren“, sagt Starkholm. „Tatsächlich weisen sie eine um bis zu zwei Größenordnungen höhere Empfindlichkeit auf als handelsübliche Materialien wie amorphes Selen oder CdZnTe – und können fast 50-mal niedrigere Röntgendosen detektieren“, sagt Starkholm.

Langzeitstabilität

Neben umfangreichen Analysen im Labor konnte das Team die Proben auch an der KMC-3-XPP-Beamline der BESSY II untersuchen. Die Detektoren zeigten bei längerer gepulster Röntgenbestrahlung unter hohem Photonenfluss eine stabile Reaktion, ohne dass nach der Bestrahlung eine messbare Leistungsminderung festgestellt wurde, was die Robustheit des Materials belegt.

Ausblick: Technologietransfer

„Diese Ergebnisse zeigen, wie spannend es sein kann, die Forschung an Hybridmaterialien am HZB über die Photovoltaik hinaus auszuweiten, sowohl innerhalb als auch außerhalb des Perowskitbereichs. Unsere Studie belegt, dass diese völlig neuen Materialien auf Wismutbasis hervorragende Kandidaten für die Röntgendetektion sind. Mit empfindlicheren Röntgendetektoren könnte die Strahlenbelastung bei der Röntgenbildgebung deutlich reduziert werden“, sagt Olena Maslyanchuk.

Der nächste Schritt ist der Technologietransfer. „Es gibt so viele spannende Unternehmen in Adlershof, mit denen wir zusammenarbeiten könnten, um die Entwicklung solcher Röntgendetektoren zu optimieren“, sagt Starkholm.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.
  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.
  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.