Michael Naguib is visiting HZB as a Humboldt Research Awardee

Michael Naguib from Tulane University, USA, is one of the discoverers of a new class of materials, MXenes. During his Humboldt Research Award in 2025, he is working with Tristan Petit at HZB.

Michael Naguib from Tulane University, USA, is one of the discoverers of a new class of materials, MXenes. During his Humboldt Research Award in 2025, he is working with Tristan Petit at HZB. © Paula Burch-Celentano/ Tulane University

Professor Michael Naguib, from Tulane University in the USA, is one of the discoverers of a new class of 2D materials: MXenes are characterised by a puff pastry-like structure and have many applications, such as in the production of green hydrogen or as storage media for electrical energy. During his Humboldt Research Award in 2025, Professor Naguib is working with Prof Volker Presser at the Leibniz Institute for New Materials in Saarbrücken and with Dr Tristan Petit at HZB.

Michael Naguib, Ph.D., is an Ken & Ruth Arnold Early Career Professor in Science and Engineering at Tulane University in New Orleans, Louisiana, USA. He is a leading expert in the field of two-dimensional materials. His research group at Tulane University focuses on the synthesis and characterization of novel nanomaterials, including MXenes and Transition Metal Carbo-chalcogenides, for energy and environmental applications.

He completed his doctorate in 2014 at Drexel University, where he was involved in the discovery of a new class of materials. At that time, he tested MAX phases (layered ceramics) as electrode materials for lithium batteries. To create more space for the lithium ions, he used an acid and discovered that the “A” layers in the MAX phases had been selectively removed, transforming the remaining MX layers into a structure that, under a scanning electron microscope, resembled puff pastry: MXene.

To date, a wide range of MXenes have been synthesised. Their applications are also highly diverse: MXenes can be used as electrodes for energy storage devices, in catalysis and as sensors for medical applications. ‘I am delighted to deepen our collaboration with Tristan Petit and his team at HZB,’ says Naguib. ‘We will be discussing several fundamental questions regarding our novel materials and preparing a series of experiments to conduct at BESSY II to help us answering these questions.’

Invitation to the Seminar:

Monday, 23.06.2025 at 11 AM

Lecture hall,  BESSY II, Albert-Einstein-Straße 15, 12489 Berlin

Prof. Dr. Michael Naguib:

“Tailoring 2D Materials from the Atomic to Nanoscale for Electrochemical Energy Applications”

arö

  • Copy link

You might also be interested in

  • Susanne Nies appointed to EU advisory group on Green Deal
    News
    12.11.2025
    Susanne Nies appointed to EU advisory group on Green Deal
    Dr. Susanne Nies heads the Green Deal Ukraina project at HZB, which aims to support the development of a sustainable energy system in Ukraine. The energy expert has now also been appointed to the European Commission's scientific advisory group to comment on regulatory burdens in connection with the net-zero target (DG GROW).

  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.