MAX IV and BESSY II initiate new collaboration to advance materials science

Great joy among the partners of MAX IV and HZB after signing the Cooperation agreement. From left Olof Karis, Director at MAX IV, Antje Hasselberg, authorized signatory at HZB and Bernd Rech, Scientific Director at HZB.

Great joy among the partners of MAX IV and HZB after signing the Cooperation agreement. From left Olof Karis, Director at MAX IV, Antje Hasselberg, authorized signatory at HZB and Bernd Rech, Scientific Director at HZB. © HZB /Ronja Grünke

The Cooperation agreement was signed during a meeting between researchers from MAX IV and BESSY II in Berlin.

The Cooperation agreement was signed during a meeting between researchers from MAX IV and BESSY II in Berlin. © HZB

Swedish national synchrotron laboratory MAX IV and Helmholtz-Zentrum Berlin (HZB) with BESSY II light source jointly announce the signing of a 5-year Cooperation Agreement. The new agreement establishes a framework to strengthen cooperation for operational and technological development in the highlighted fields of accelerator research and development, beamlines and optics, endstations and sample environments as well as digitalisation and data science.

The new agreement increases accessibility and overall opportunities for users to conduct advanced materials science investigations at MAX IV and BESSY II in a smooth, integrated manner. Facility collaboration through project-based initiatives may include, among others, reciprocal exchange of knowledge, instrumentation development and usage, data handling, scientific and technical staff, research initiatives, and PhD programme activities.

 Decades of collaboration between Sweden and HZB—rooted in, for example, shared work on energy-relevant materials and enabling methods and technologies—have continually advanced our field. The Cooperation Agreement we sign today gives MAX IV and HZB a solid platform to keep advancing synchrotron science into the 2030s and beyond”, says Olof Karis, Director of MAX IV.

Bernd Rech, Scientific Director at HZB highlights: “The development of new materials is key for a climate-neutral future, we are striving to achieve through science and innovation. I am delighted about the close relationship we have built up between MAX IV and HZB over the years. Thanks to this agreement, we will ensure that bright minds continue to work together, for example to investigate new types of materials and accelerator technologies.

About the facilities

MAX IV Laboratory is a national large-scale research facility in Lund, Sweden providing scientists with the most brilliant X-rays for research in the materials and life sciences. The synchrotron is hosted by Lund University and is primarily funded by Swedish and international research funders, consortia, and Swedish research universities.
> MAX IV  

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB) is a member of the Helmholtz Association of German Research Centres in Germany and focuses on energy materials research and the further development of accelerator facilities.
HZB operates BESSY II light source
as well as modern laboratories and instruments for the investigation of structures and processes in materials.
> Helmholtz-Zentrum Berlin

 

MAX IV, BESSY II Comms

  • Copy link

You might also be interested in

  • Self assembling monolayer can improve lead-free perovskite solar cells too
    Science Highlight
    04.08.2025
    Self assembling monolayer can improve lead-free perovskite solar cells too
    Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.
  • Scrolls from Buddhist shrine virtually unrolled at BESSY II
    Science Highlight
    23.07.2025
    Scrolls from Buddhist shrine virtually unrolled at BESSY II
    The Mongolian collection of the Ethnological Museum of the National Museums in Berlin contains a unique Gungervaa shrine. Among the objects found inside were three tiny scrolls, wrapped in silk. Using 3D X-ray tomography, a team at HZB was able to create a digital copy of one of the scrolls. With a mathematical method the scroll could be virtually unrolled to reveal the scripture on the strip. This method is also used in battery research.
  • Sodium-ion batteries: New storage mechanism for cathode materials
    Science Highlight
    18.07.2025
    Sodium-ion batteries: New storage mechanism for cathode materials
    Li-ion and Na-ion batteries operate through a process called intercalation, where ions are stored and exchanged between two chemically different electrodes. In contrast, co-intercalation, a process in which both ions and solvent molecules are stored simultaneously, has traditionally been considered undesirable due to its tendency to cause rapid battery failure. Against this traditional view, an international research team led by Philipp Adelhelm has now demonstrated that co-intercalation can be a reversible and fast process for cathode materials in Na-ion batteries. The approach of jointly storing ions and solvents in cathode materials provides a new handle for designing batteries with high efficiency and fast charging capabilities. The results are published in Nature Materials.