Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen

Eine selbstorganisierte Lage aus Phenothiazin-Molekülen ermöglicht die Bildung von Perowskit-Schichten mit guter optoelektronischer Qualität und reduziert Verluste.

Eine selbstorganisierte Lage aus Phenothiazin-Molekülen ermöglicht die Bildung von Perowskit-Schichten mit guter optoelektronischer Qualität und reduziert Verluste. © 10.1002/aenm.202500841

Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.

Perowskit-Halbleiter sind ein spannendes neues Material für Solarzellen. Sie sind extrem dünn und flexibel, einfach und günstig herzustellen und hoch effizient. Bevor Perowskit-Solarzellen jedoch in großem Maßstab vermarktet werden können, müssen zwei Hürden überwunden werden: Erstens sind sie noch nicht über Jahrzehnte hinweg stabil, und zweitens enthalten die leistungsstärksten Perowskit-Materialien Blei. Eine interessante, ungiftige Alternative, die am HZB untersucht wird, sind Zinn-Perowskit-Solarzellen. Sie sind potenziell stabiler als ihre bleihaltigen Pendants. Dank ihrer besonderen elektrooptischen Eigenschaften eignen sie sich besonders gut für Tandem- und Dreifach-Solarzellen. Dennoch sind Zinn-Perowskit-Solarzellen noch weit davon entfernt, die hohen Wirkungsgrade von bleihaltigen Perowskiten zu erreichen.

SAMs in Zinn-Perowskit?

In aktuellen Zinn-Perowskit-Solarzellen wird die unterste Kontaktschicht mit PEDOT:PSS hergestellt. Dies ist nicht nur ein aufwendiger Prozess, sondern führt auch zu Verlusten. In Bleiperowskiten kann die PEDOT:PSS-Schicht jedoch durch eine elegantere Lösung ersetzt werden: selbstorganisierte Monoschichten (SAMs), die sogar zu neuen Wirkungsgradrekorden geführt haben.

Bislang lieferten Experimente mit SAMs auf Basis der Verbindung MeO-2PACz in Zinnperowskiten schlechtere Ergebnisse als mit PEDOT:PSS. Dennoch war der Projektleiter Dr. Artem Musiienko überzeugt, dass SAMs auch in Zinnperowskiten Vorteile bieten können.

Zusammen mit seinen Partnern analysierte er mögliche Probleme bei der Verwendung von MeO-2PACz als Kontaktschicht für Zinnperowskit. Berechnungen mit der Dichtefunktionaltheorie ergaben, dass die resultierende Grenzfläche nicht gut mit dem benachbarten Perowskitgitter harmonierte, was zu erheblichen Verlusten führte.

Phenothiazin passt besser

Das Team suchte daher nach alternativen selbstorganisierten Monoschichtmolekülen (SAM), die eine bessere Passung ermöglichen. Sie entdeckten Phenothiazin, eine schwefelhaltige funktionelle Gruppe, die mit Th-2EPT abgekürzt wird. Dr. Tadas Malinauskas und Mantas Marčinskas von der Technischen Universität Kaunas in Litauen synthetisierten die neue Verbindung. Im Vergleich zu PEDOT ermöglicht Th-2EPT die Bildung von Perowskitfilmen mit vergleichbarer Kristallinität, allerdings mit kleineren Körnern. Zinn-Perowskit-Solarzellen mit einer SAM aus Th-2EPT übertreffen Kontrollzellen, die entweder mit PEDOT oder MeO-2PACz hergestellt wurden. Th-2EPT führt zu einer außergewöhnlich guten Grenzfläche, die Rekombinationsverluste minimiert.

Gezieltes Design führte zum Erfolg

„Wir haben gezeigt, dass die Leistung von Zinn-Perowskit-Photovoltaik durch gezieltes Moleküldesign deutlich verbessert werden kann“, sagt Artem Musiienko. Die neuen Zinn-Perowskit-Solarzellen mit Th-2EPT erreichen einen Wirkungsgrad von 8,2 %. Diese Ergebnisse legen den Grundstein für weitere Verbesserungen der Zinn-Perowskit-Grenzflächen und ebnen den Weg für die Entwicklung von Tandemsolarzellen aus reinem Zinn-Perowskit. „Wir weisen nach, dass die höhere Leistung auf die hervorragende optoelektronische Qualität des auf dem neuartigen SAM gewachsenen Perowskits zurückzuführen ist“, sagt Valerio Stacchini, einer der Erstautoren der Veröffentlichung.

Hinweis: Dr. Artem Musiienko leitet die Gruppe Robotisierte Optoelektronische Materialien und Photovoltaik-Engineering am HZB sowie das BMBF-Projekt NanoMatFutur COMET-PV.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.
  • Bernd Rech in den BR50 Vorstand gewählt
    Nachricht
    30.01.2026
    Bernd Rech in den BR50 Vorstand gewählt
    Der wissenschaftliche Geschäftsführer des Helmholtz-Zentrum Berlin ist das neue Gesicht hinter der Unit „Naturwissenschaften“ beim Berlin Research 50 (BR50). Nach der Wahl im Dezember 2025 fand am 22. Januar 2026 die konstituierende Sitzung des neuen BR50-Vorstands statt.  Mitglieder sind Michael Hintermüller (Weierstrass Institute, WIAS), Noa K. Ha (Deutsches Zentrum für Integrations- und Migrationsforschung, DeZIM), Volker Haucke (Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP), Uta Bielfeldt (Deutsches Rheuma-Forschungszentrum Berlin, DRFZ) und Bernd Rech (HZB).
  • Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Nachricht
    27.01.2026
    Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Unsere Solarfassade in Berlin-Adlershof hat im Jahr 2025 so viel Strom erzeugt wie in keinem der vergangenen vier Betriebsjahre.