Iridium-free catalysts for acid water electrolysis investigated

Scanning electron micrograph of a cobalt-based catalyst on a fibre substrate (micrograph was manually coloured) and schematic representation of a multi-technique operando material characterization indicated by artificially added light ray, bubbles and rising spectra.

Scanning electron micrograph of a cobalt-based catalyst on a fibre substrate (micrograph was manually coloured) and schematic representation of a multi-technique operando material characterization indicated by artificially added light ray, bubbles and rising spectra. © Marc Tesch/MPI-CEC

Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.

The oxygen evolution reaction (OER) in water electrolysis requires special catalytic support. However, iridium catalysts are probably not suitable for large-scale use due to their price and limited availability, so alternatives must be found. An international team led by Dr Alexandr N. Simonov from Monash University in Melbourne, Australia, has now investigated the acidic oxygen evolution reaction on cobalt-based catalysts and elucidated the changes at the active cobalt sites. The research teams used different methods and combined their findings to a new picture.

Processes during the Oxygen evolution reaction

The stabilisation of catalysts during OER involves the interaction of corrosion and oxidation processes and is considered key to catalyst development. ‘In this study, we have discovered that the corrosion and deposition processes are not directly linked to the catalytic process, but run in parallel,’ says Dr Marc Tesch from the Max Planck Institute for Chemical Energy Conversion, one of the authors of the study. The time-resolved measurements also show that the development of the catalyst to a stabilised active state is not a rapid process, but takes place on a time scale of minutes. X-ray spectroscopy shows that the catalytically active cobalt sites adopt an oxidation state higher than 3+ during the acidic OER and do not exhibit long-range order. This distinguishes them from previously described cobalt μ-(hydr)oxo structures, which are present in neutral and alkaline reaction environments.

International collaboration under Corona conditions

A significant part of the research was carried out at BESSY II during the coronavirus pandemic, when international travel and external access to the synchrotron facility were severely restricted. ‘The support provided by the local team at BESSY II was therefore particularly important,’ says Tesch.

The findings are helpful for developing cost-effective cobalt-based anode catalysts for use in proton exchange water electrolysers.

arö

  • Copy link

You might also be interested in

  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.