HZB Newsroom
- Battery research: visualisation of aging processes operandoLithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
- More time for discussionsThe South African chemist Denzil Moodley is the first Industrial Research Fellow at HZB. He is playing a leading role in the CARE-O-SENE project. The Fellowship program aims to further accelerate the development of an efficient catalyst for a sustainable aviation fuel. An interview about the CARE-O-SENE project and why it is so important for scientists from industry and public research to work together.
- Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery LabThe Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
- Green hydrogen: A cage structured material transforms into a performant catalystClathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.
- Optical innovations for solar modules - which are the most promising?In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.
- Georg Forster Research Fellow explores photocatalystsDr. Moses Alfred Oladele is working on photocatalysis for CO2 conversion in a joint project with the group of Dr. Matt Mayer, HZB, and Prof. Andreas Taubert at the University of Potsdam. The chemist from Redeemer's University in Ede, Nigeria, came to Berlin in the summer of 2024 with a Georg Forster Research Fellowship from the Alexander von Humboldt Foundation and will work at HZB for two years.
- Perovskite solar cells: New Young Investigator Group funded by BMBF at HZBIn the COMET-PV project, Dr Artem Musiienko aims to significantly accelerate the development of perovskite solar cells. He is using robotics and AI to analyse the many variations in the material composition of tin-based perovskites. The physicist will set up a Young Investigator Group at HZB. He will also have an affiliation with Humboldt University in Berlin, where he will gain teaching experience in preparation for a future professorship.
- Strategisches Positionspapier zur Stärkung der SolarindustrieFrankfurt, 06. März 2025 – Die führenden deutschen Solarforschungseinrichtungen, die Fachabteilung „Photovoltaik Produktionsmittel“ des Industrieverbands VDMA und das Produktionsplanungs-Unternehmen RCT Solutions, haben ein gemeinsames Positionspapier zur Stärkung der deutschen und europäischen Solarindustrie veröffentlicht. Dieses wird nun an die Parteien übermittelt, die nach der Bundestagswahl im Bundestag vertreten sind. Ziel ist es, die vorgeschlagenen Maßnahmen in die Koalitionsverhandlungen einzubringen und damit die Grundlage für eine widerstandsfähige und wettbewerbsfähige Solarindustrie in Deutschland zu schaffen.
- Innovative battery electrode made from tin foamMetal-based electrodes in lithium-ion batteries promise significantly higher capacities than conventional graphite electrodes. Unfortunately, they degrade due to mechanical stress during charging and discharging cycles. A team at HZB has now shown that a highly porous tin foam is much better at absorbing mechanical stress during charging cycles. This makes tin foam an interesting material for lithium batteries.
- Perovskite solar cells: thermal stress is the key to their long term stabilityPerovskite solar cells are highly efficient and low cost in production. However, they still lack stability over the decades under real weather conditions. An international research collaboration led by Prof. Antonio Abate has now published a perspective on this topic in the journal Nature Reviews Materials. They explored the effects of multiple thermal cycles on microstructures and interactions between different layers of perovskite solar cells. They conclude that thermal stress is the decisive factor in the degradation of metal-halide perovskites. Based on this, they derive the most promising strategies to increase the long-term stability of perovskite solar cells.
- Leading Sasol scientist appointed as Industrial Research Fellow at HZBWithin the CARE-O-SENE project, HZB is cooperating with the South African company Sasol on innovative catalysts for sustainable aviation fuels (SAF). Now, the collaboration is intensifying: Dr. Denzil Moodley, a leading scientist in the field of Fischer-Tropsch at Sasol Research and Technology, is being appointed as Industrial Research Fellow at HZB. Moodley will contribute his expertise at HZB with the aim of accelerating the innovation cycle for sustainable fuel technologies.
- HZB Sets New World Record for CIGS Perovskite Tandem Solar CellsCombining two semiconductor thin films into a tandem solar cell can achieve high efficiencies with a minimal environmental footprint. Teams from HZB and Humboldt University Berlin have now presented a CIGS-perovskite tandem cell that sets a new world record with an efficiency of 24.6%, certified by the independent Fraunhofer Institute for Solar Energy Systems.
- “Germany mustn’t lose sight of its ambitious goals”The Science Year 2025 is dedicated to the topic of ‘Future Energy’ and the Helmholtz Association is conducting cutting-edge research in this field. An interview with Bernd Rech, Vice-President Energy of the Helmholtz Association and Scientific Director at HZB, on topics such as: Where does Germany stand with the restructuring of its energy system? What contribution can research make? And what about hydrogen, nuclear energy and nuclear fusion, and the new challenges for a secure supply in times of cyber attacks?
- Lithium-sulphur pouch cells investigated at BESSY IIA team from HZB and the Fraunhofer Institute for Material and Beam Technology (IWS) in Dresden has gained new insights into lithium-sulphur pouch cells at the BAMline of BESSY II. Supplemented by analyses in the HZB imaging laboratory and further measurements, a new picture emerges of processes that limit the performance and lifespan of this industrially relevant battery type. The study has been published in the prestigious journal Advanced Energy Materials.
- Less is more: Why an economical Iridium catalyst works so wellIridium-based catalysts are needed to produce hydrogen using water electrolysis. Now, a team at HZB has shown that the newly developed P2X catalyst, which requires only a quarter of the Iridium, is as efficient and stable over time as the best commercial catalyst. Measurements at the EMIL lab at BESSY II have now revealed how the special chemical environment in the P2X catalyst during electrolysis promotes the oxygen evolution reaction during water splitting.
- 20 years of promoting science in the school lab38,000 visitors in 20 years: high demand shows need for science education
Twenty years ago, on 29 November 2004, Klaus Böger, then Senator for Education in Berlin, opened one of the capital's first school laboratories. Since then, Helmholtz-Zentrum Berlin (HZB), in cooperation with the Berlin Senate, has successfully promoted science education through project days and further training in the school lab.
- Battery research with the HZB X-ray microscopeNew cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.
- BESSY II: New procedure for better thermoplasticsBio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
- Hydrogen: Breakthrough in alkaline membrane electrolysersA team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.
- Perovskite solar cells: TEAM PV develops reproducibility and comparabilityTen teams at Helmholtz-Zentrum Berlin are building a long-term international alliance to converge practices and develop reproducibility and comparability in perovskite materials. The TEAM PV project is funded by the Federal Ministry of Education and Research (BMBF), Germany.
- Postdocs at HZB: Crucial for research, innovation and diversityAt HZB, 117 postdocs from 29 countries are employed. They play a crucial role in driving the main research activities, fostering creativity and innovation. To honor them, the Postdoc Appreciation Week was first organised in the USA in 2009 and has in the meantime become a regular event in Germany as well in the third week of September every year.
- Green hydrogen: MXenes shows talent as catalyst for oxygen evolutionThe MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.
- Green hydrogen: ‘Artificial leaf’ becomes better under pressureHydrogen can be produced via the electrolytic splitting of water. One option here is the use of photoelectrodes that convert sunlight into voltage for electrolysis in so called photoelectrochemical cells (PEC cells). A research team at HZB has now shown that the efficiency of PEC cells can be significantly increased under pressure.
- Green hydrogen from direct seawater electrolysis- experts warn against hypeAt first glance, the plan sounds compelling: invent and develop future electrolysers capable of producing hydrogen directly from unpurified seawater. But a closer look reveals that such direct seawater electrolysers would require years of high-end research. And what is more: DSE electrolyzers are not even necessary - a simple desalination process is sufficient to prepare seawater for conventional electrolyzers. In a commentary in Joule, international experts compare the costs and benefits of the different approaches and come to a clear recommendation.
- From waste to value: The right electrolytes can enhance glycerol oxidationWhen biomass is converted into biodiesel, huge amounts of glycerol are produced as a by-product. So far, however, this by-product has been little utilised, even though it could be processed into more valuable chemicals through oxidation in photoelectrochemical reactors. The reason for this: low efficiency and selectivity. A team led by Dr Marco Favaro from the Institute for Solar Fuels at HZB has now investigated the influence of electrolytes on the efficiency of the glycerol oxidation reaction. The results can help to develop more efficient and environmentally friendly production processes.
- Recruiting film is online!
HZB has launched a new recruiting film to attract talented people from administration, IT and technology. In cooperation with an external film company, our HR department has produced a video with a lot of commitment and creativity that presents the unique opportunities and team spirit at our centre.
- Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) InauguratedOn June 17, 2024, the Helmholtz Institute for Polymers in Energy Applications (HIPOLE Jena) was officially inaugurated in Jena in the presence of Wolfgang Tiefensee, Minister for Economy, Science, and Digital Society of the Free State of Thuringia. The institute was founded by the Helmholtz Center Berlin for Materials and Energy (HZB) in cooperation with the Friedrich Schiller University Jena. It is dedicated to developing sustainable polymer materials for energy technologies, which are expected to play a key role in the energy transition and support Germany’s goal of becoming climate-neutral by 2045.
- Chilean President visits Helmholtz-Zentrum BerlinThe President of Chile, Gabriel Boric Font, visited HZB on 11 June with a delegation of 50 people. Among the highlights of the evening were the signing of a Memorandum of Understanding between the Chilean Corporation for the Promotion of Production (CORFO) and HZB and a visit to BESSY II light source.
- Watching indium phosphide at workIndium phosphide is a versatile semiconductor. The material can be used for solar cells, for hydrogen production and even for quantum computers – and with record-breaking efficiency. However, little research has been conducted into what happens on its surface. Researchers have now closed this gap and used ultra-fast lasers to scrutinise the dynamics of the electrons in the material.