Sun, F.; Osenberg, M.; Dong, K.; Zhou, D.; Hilger, A.; Jafta, C.J.; Risse, S.; Lu, Y.; Markötter, H.; Manke, I.: Correlating Morphological Evolution of Li Electrodes with Degrading Electrochemical Performance of Li/LiCoO2 and Li/S Battery Systems: Investigated by Synchrotron X-ray Phase Contrast Tomography. ACS Energy Letters 3 (2018), p. 356-365
10.1021/acsenergylett.7b01254

Abstract:
Efficient Li utilization is generally considered to be a prerequisite for developing next-generation energy storage systems (ESSs). However, uncontrolled growth of Li microstructures (LmSs) during electrochemical cycling has prevented its practical commercialization. Herein, we attempt to understand the correlation of morphological evolution of Li electrodes with degrading electrochemical performances of Li/LiCoO2 and Li/S systems by synchrotron X-ray phase contrast tomography technique. It was found that the continuous transformation of the initial dense Li bulk to a porous lithium interface (PLI) structure intimately correlates with the gradually degrading overall cell performance of these two systems. Additionally, the formation mechanism of the PLI and its correlation with previously reported inwardly growing LmS and the lithium-reacted region have been intensively discussed. The information that we gain herein is complementary to previous investigations and may provide general insights into understanding of degradation mechanisms of Li metal anodes and also provide highly needed guidelines for effective design of reliable next-generation Li metal-based ESSs.