PVcomB produziert erste Schichten

 Die erste am PVcomB produzierte Silizium-Schicht<br> auf 30x30 cm2 Glas

Die erste am PVcomB produzierte Silizium-Schicht
auf 30x30 cm2 Glas

Erfolgreiche erste Beschichtung: die Glasplatte verlässt <br>das Cluster-Tool

Erfolgreiche erste Beschichtung: die Glasplatte verlässt
das Cluster-Tool

Herzstück der neuen Silizium-Forschungslinie: <br>das Clustertool der Firma Applied Materials

Herzstück der neuen Silizium-Forschungslinie:
das Clustertool der Firma Applied Materials

Ein neuer Abschnitt in der Geschichte des PVcomB hat begonnen: Am 15.11. erfolgte die erste eigene Beschichtung von 30 x 30 cm2 Glasmodulen mit amorphem Silizium. Die Deposition erfolgte an einer PECVD-Clusteranlage der Firma Applied Materials, Herzstück der Forschungslinie für Dünnschicht-Silizium, die am PVcomB aufgebaut wird.

 PECVD steht für plasma enhanced chemical vapour deposition (plasmaunterstützte chemische Gasphasenabscheidung), momentan auch für industrielle Anwendungen die Technik der Wahl für diese Art von Solarzellen. In dem Cluster-Tool werden hauchdünne amorphe und mikrokristalline Siliziumschichten (a-Si/µc-Si) auf Trägermaterialien wie Glas aufgebracht. Diese Materialkombination weist im Vergleich zur „klassischen“, auf Wafern basierenden Silizium-Technologie viele Vorteile wie niedrigeren Material- und Energieverbrauch auf. Allerdings müssen für Photovoltaik-Modulen dieser Art höhere Wirkungsgrade erreicht werden. Die weitere Aufskalierung in die Massenproduktion ist für die Dünnschicht Silizium Technologie am besten verstanden und kontrolliert.

An der PVcomB Forschungslinie wird eine industrienahe Produktion von Photovoltaik-Modulen möglich, die mit einer Größe von 30 x 30 Quadratzentimetern eine Brücke zwischen den kleinen, manchmal nur wenigen Millimetern kleinen Laborzellen und den großen, oftmals mehrere Quadratmeter messenden Industriemodulen bilden. „Mit diesem Cluster-Tool arbeiten wir am PVcomB unter ähnlichen Bedingungen wie die Industrie. So bilden wir eine direkte Brücke zwischen der Grundlagenforschung und Industrie und können die Unternehmen unterstützen, sowohl mit Forschungsergebnissen als auch mit praktisch ausgebildeten Wissenschaftlern.“ erläutert Dr. Rutger Schlatmann, Direktor des PVcomB.

EZ

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.