Rückseitensolarzelle mit Siliziumheterokontakten von HZB und ISFH erreicht Rekord-Wirkungsgrad

Kammf&ouml;rmig ineinandergreifende Metallkontakte auf der<br />sonnenabgewandten Seite der R&uuml;ckseitensolarzellen mit<br />Siliziumheterokontakten. Zu sehen sind mehrere Testzellen<br />auf einem Siliziumwafer.<br />Foto: HZB/Jan Haschke

Kammförmig ineinandergreifende Metallkontakte auf der
sonnenabgewandten Seite der Rückseitensolarzellen mit
Siliziumheterokontakten. Zu sehen sind mehrere Testzellen
auf einem Siliziumwafer.
Foto: HZB/Jan Haschke

Unabhängiges Prüflabor bestätigt 20,2 Prozent

Eine neuartige Solarzelle, die so genannte „Rückkontaktierte Heteroübergang-Solarzelle“ hat einen enormen Sprung beim Wirkungsgrad geschafft: Wurden bis 2011 nur Werte von 15 bis 16 Prozent veröffentlicht, so erreichte eine Weiterentwicklung jetzt einen Wirkungsgrad von 20,2 Prozent. Sie entstand im Institut für Silizium-Photovoltaik (E-I1) des Helmholtz-Zentrum Berlin (HZB) in Zusammenarbeit mit dem Institut für Solarenergieforschung Hameln (ISFH) im Rahmen eines vom Bundesministerium für Umwelt und den Firmen Bosch, Schott Solar, Sunways und Stiebel Eltron unterstützten Projektes. Der Rekord wurde von einem unabhängigen Kalibrierlabor am Fraunhofer Institut für Solare Energiesysteme (ISE) in Freiburg im Breisgau gemessen.

Die rückkontaktierte Heteroübergang-Solarzelle vereinigt zwei verschiedene Photovoltaik-Technologien und ihre Vorteile: Rückkontakte und Siliziumheterokontakte. Bei Solarzellen mit Rückkontakten liegen die Metallfinger, die den bei Sonneneinstrahlung entstehenden Strom einsammeln, auf der Rückseite der Zelle - so werden Verschattungseffekte vermieden und es können breite, widerstandsarme Kontaktfinger verwendet werden. Bei der Heterokontakttechnologie kommen zwei Halbleiter mit unterschiedlichen Bandlücken in einer Solarzelle zum Einsatz. In diesem Fall handelt es sich um kristallines und amorphes Silizium, was an sich schon zu sehr hohen Wirkungsgraden führt. „Beide Verfahren haben den Vorteil, dass sie schon industriell genutzt werden“, sagt HZB-Institutsleiter Prof. Dr. Bernd Rech: „Das Kombinieren beider Konzepte gilt als Möglichkeit, sehr hohe Effizienzen um 25 Prozent zu erreichen. Damit könnte man den Preis pro erzeugtem Watt deutlich senken. Mit unserer Proof-Of-Concept Studie sind wir nun einen beachtlichen Schritt vorangekommen. In Zukunft wird es darum gehen, die Effizienz weiter zu erhöhen und einen möglichst einfachen Herstellungsprozess zu entwickeln.“

Die ersten Veröffentlichungen zu Silizium-basierten Heterorückkontakt-Solarzellen stammen aus dem Jahr 2007- so auch Publikationen aus dem HZB-Institut (Stangl et al.). Die bisher veröffentlichten Wirkungsgrade dieser Zellen lagen bis 2011 im Bereich von 15 bis 16 Prozent. Ende 2011 wurde auf der europäischen Photovoltaikkonferenz von der Entwicklungsabteilung des Solarzellenherstellers LG auch schon über einen Wirkungsgrad von ca. 22 Prozent berichtet, der allerdings bisher nicht von unabhängiger Seite bestätigt wurde. Im Frühjahr 2011 entstand eine kleinflächige Laborzelle mit einem Wirkungsgrad von 20,2 Prozent (Mingirulli et al. pss rrl, März 2011). Die vom HZB und ISFH im Rahmen des Projekts „TopShot“ entwickelte Rückkontakt-Heteroübergang-Solarzelle wurde nun vom Kalibrierlabor ISE CalLab vermessen und hat den höchsten unabhängig bestätigten Wirkungsgrad dieser Solarzellenart erreicht. „Wenn Experten verschiedener Felder gut zusammen arbeiten, beschleunigt das die Entwicklung erheblich“, stellt Prof. Dr. Nils-Peter Harder vom ISFH fest.

Prof. Nils-Peter Harder
ISFH
Tel.: +49 (0)5151-999-631
harder@isfh.de

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Nachricht
    08.10.2025
    Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Sasol Research & Technology und das Helmholtz-Zentrum Berlin (HZB) erweitern ihre Partnerschaft auf den Bereich der Digitalisierung. Dabei bauen sie auf gemeinsamen Anstrengungen im Rahmen des CARE-O-SENE-Projekts und einer Anfang 2025 ins Leben gerufenen Industrial Fellowship auf. Die neue Initiative ist ein Schritt vorwärts bei der Nutzung digitaler Technologien, um Innovation bei Katalysatoren zu beschleunigen und die  wissenschaftliche Zusammenarbeit zu vertiefen.
  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.
  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen.