Schnelle Entmagnetisierung durch Spintransport

Dass ein ultrakurzer Laserpuls eine ferromagnetische Schicht im Nu entmagnetisieren kann, ist seit etwa 1996 bekannt. Doch wie diese Entmagnetisierung funktioniert, ist noch nicht verstanden. Nun haben die Physikerin Dr. Andrea Eschenlohr und ihre Kollegen vom Helmholtz-Zentrum Berlin und der Universität Uppsala in Schweden gezeigt, dass es offenbar nicht der Lichtpuls selbst ist, der die Entmagnetisierung bewirkt.

Sie bestrahlten dafür zwei unterschiedliche Schichtsysteme mit extrem kurzen Laserpulsen von nur hundert Femtosekunden (10–15 s). Während eine Probe im Wesentlichen aus einer dünnen ferromagnetischen Nickelschicht bestand, war in der anderen Probe diese Nickelschicht von einer unmagnetischen Goldschicht bedeckt. Obwohl sie nur 30 Nanometer (10-9m) dick war, schluckte die Goldschicht den Großteil des Laserlichts, in der Nickelschicht kam kaum noch Licht an. Dennoch nahm die Magnetisierung der Nickelschicht kurz nach dem Eintreffen des Laserpulses in beiden Proben rasch ab, bei der goldbeschichteten Probe allerdings um Sekundenbruchteile später. Dies konnten die Forscher durch Messungen mit zirkular polarisierten Femtosekunden-Röntgenpulsen beobachten, die sie am Femtoslicing-Strahlrohr am Berliner Elektronenspeicherring BESSY II durchführten, den das HZB betreibt.

„Wir konnten damit experimentell zeigen, dass dabei die ultraschnelle Entmagnetisierung nicht durch das Licht selbst bewirkt wird, sondern durch heiße Elektronen, die der Laserpuls erzeugt“, erklärt Andrea Eschenlohr. Die so angeregten Elektronen können sich über kurze Distanzen, also durch die hauchdünne Goldschicht, extrem rasch bewegen. Sie transportieren damit ihr magnetisches Moment (den „Spin“) auch in die ferromagnetische Nickelschicht, so dass dort die vorherrschende magnetische Ordnung zusammenbricht. „Eigentlich wollten wir sehen, wie wir die Spins mit dem Laserpuls beeinflussen können“, erklärt der Leiter des Experiments Dr. Christian Stamm. „Dass wir aber direkt beobachten konnten, wie diese Spins wandern, war eine Überraschung.“

Laserpulse sind damit eine Möglichkeit, gezielt „Spinströme“ zu erzeugen, bei denen Spin an Stelle von elektrischer Ladung übertragen wird. Diese Beobachtung ist für das Forschungsgebiet der Spintronik interessant. Dabei entwerfen Forscher neue Bauelemente aus magnetischen Schichtsystemen, die mit Spins anstatt mit Elektronen „rechnen“ und dadurch Informationen extrem schnell und energiesparend verarbeiten und speichern können.

Dr. Andrea Eschenlohr war bis Ende 2012 am HZB beschäftigt, wo sie die hier vorgestellten Ergebnisse im Rahmen ihrer Doktorarbeit erzielte. Sie ist seit Januar als wissenschaftliche Mitarbeiterin an der Universität Duisburg-Essen tätig.

Die Arbeit “Ultrafast spin transport as key to femtosecond demagnetization” wurde am 27.1.2012 in Nature Materials veröffentlicht.
http://dx.doi.org/10.1038/NMAT3546

Dr. Andrea Eschenlohr
Universität Duisburg-Essen
Tel.: +49 (0)203 379-4531
andrea.eschenlohr@uni-due.de

Die Dissertation von Andrea Eschenlohr ist nun online im Open Access abrufbar.

((doi: http://dx.doi.org/10.5442/d0033))

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.
  • Helmholtz-Nachwuchsgruppe zu Magnonen
    Nachricht
    24.11.2025
    Helmholtz-Nachwuchsgruppe zu Magnonen
    Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.

    Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.

  • Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe.